首页> 外文期刊>Computer Vision, IET >Many-to-many feature matching in object recognition: a review of three approaches
【24h】

Many-to-many feature matching in object recognition: a review of three approaches

机译:对象识别中的多对多特征匹配:三种方法的综述

获取原文
获取原文并翻译 | 示例

摘要

The mainstream object categorisation community relies heavily on object representations consisting of local image features, due to their ease of recovery and their attractive invariance properties. Object categorisation is therefore formulated as finding, that is, `detecting??, a one-to-one correspondence between image and model features. This assumption breaks down for categories in which two exemplars may not share a single local image feature. Even when objects are represented as more abstract image features, a collection of features at one scale (in one image) may correspond to a single feature at a coarser scale (in the second image). Effective object categorisation therefore requires the ability to match features many-to-many. In this paper, we review our progress on three independent object categorisation problems, each formulated as a graph matching problem and each solving the many-tomany graph matching problem in a different way. First, we explore the problem of learning a shape class prototype from a set of class exemplars which may not share a single local image feature. Next, we explore the problem of matching two graphs in which correspondence exists only at higher levels of abstraction, and describe a low-dimensional, spectral encoding of graph structure that captures the abstract shape of a graph. Finally, we embed graphs into geometric spaces, reducing the many-to-many graphmatching problem to a weighted point matching problem, for which efficient many-to-many matching algorithms exist.
机译:主流的对象分类社区在很大程度上依赖于由局部图像特征组成的对象表示,这是因为它们易于恢复并且具有吸引人的不变性。因此,将对象分类表述为发现,即“检测”图像和模型特征之间的一一对应关系。对于两个示例可能不共享单个局部图像特征的类别,此假设会分解。即使将对象表示为更抽象的图像特征,一个缩放比例(在一个图像中)的特征集合也可能对应于一个更粗糙缩放比例的单个特征(在第二个图像中)。因此,有效的对象分类需要能够多对多地匹配特征。在本文中,我们回顾了我们在三个独立的对象分类问题上的研究进展,每个问题都被表述为一个图匹配问题,并且每个问题都以不同的方式解决了多方图匹配问题。首先,我们探讨了从一组可能不共享单个局部图像特征的类示例中学习形状类原型的问题。接下来,我们探讨匹配仅在较高抽象级别存在的两个图的匹配问题,并描述捕获图的抽象形状的图结构的低维频谱编码。最后,我们将图嵌入到几何空间中,将多对多图匹配问题简化为加权点匹配问题,针对该问题存在有效的多对多匹配算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号