首页> 外文期刊>Computer Vision, IET >Fusion of infrared and visible images with Gaussian smoothness and joint bilateral filtering iteration decomposition
【24h】

Fusion of infrared and visible images with Gaussian smoothness and joint bilateral filtering iteration decomposition

机译:具有高斯平滑度的红外和可见光图像融合以及联合双边滤波迭代分解

获取原文
获取原文并翻译 | 示例

摘要

Edge-preserving filters have been applied to Multi-Scale Decomposition (MSD) for fusion of infrared and visible images. Traditional edge-preserving MSDs may hardly make satisfied structural separation from details to cause fusion performance degradation. To suppress this challenge, the authors propose a novel fusion of infrared and visible images with Gaussian smoothness and joint bilateral filtering iteration decomposition (MSD-Iteration). This method consists of three steps. First, source images are decomposed by the Gaussian smoothness and joint bilateral filtering iteration. The implementation includes the fine-scale detail removal with Gaussian filtering, edge and structure extraction with joint bilateral filtering iteration, and detail obtaining at multi-scales. The decomposition has edge-preserving and scale-aware properties to improve detail acquisition. Second, rules are designed to conduct the layer combination. For the rule of base layers, saliency maps are constructed by Laplacian and Gaussian low-pass filters to calculate initial weight maps. A guided filter is further applied to determine final weight maps for the combination. Meanwhile, they use the regional average energy weighting to obtain decision maps at multi-scales by constructing intensity deviation to combine detail layers. Third, they implement the reconstruction with the combined layers. Sufficient experiments are presented to evaluate MSD-Iteration, and experimental results validate the superiority of the authors' method.
机译:边缘保留滤镜已应用于多尺度分解(MSD),以融合红外图像和可见图像。传统的边缘保留MSD很难使结构与细节分离,从而导致融合性能下降。为了抑制这一挑战,作者提出了一种具有高斯平滑度和联合双边滤波迭代分解(MSD-Iteration)的红外图像和可见图像的新型融合方法。此方法包括三个步骤。首先,通过高斯平滑度和联合双边滤波迭代来分解源图像。该实现包括采用高斯滤波的精细尺度细节移除,采用联合双边滤波迭代的边缘和结构提取以及多尺度细节获取。分解具有保留边缘和缩放的属性,以改善细节获取。第二,设计规则以进行层组合。对于基本层的规则,由拉普拉斯和高斯低通滤波器构造显着图以计算初始权重图。进一步应用导向滤波器来确定组合的最终重量图。同时,他们通过构造强度偏差来组合细节层,使用区域平均能量加权获得多尺度的决策图。第三,他们利用合并的层来实现重建。提出了足够的实验来评估MSD迭代,实验结果验证了该方法的优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号