首页> 外文期刊>Computer standards & interfaces >A hybrid particle swarm optimization algorithm for optimal task assignment in distributed systems
【24h】

A hybrid particle swarm optimization algorithm for optimal task assignment in distributed systems

机译:分布式系统中最优任务分配的混合粒子群优化算法

获取原文
获取原文并翻译 | 示例

摘要

In a distributed system, a number of application tasks may need to be assigned to different processors such that the system cost is minimized and the constraints with limited resource are satisfied. Most of the existing formulations for this problem have been found to be NP-complete, and thus finding the exact solutions is computationally intractable for large-scaled problems. This paper presents a hybrid particle swarm optimization algorithm for finding the near optimal task assignment with reasonable time. The experimental results manifest that the proposed method is more effective and efficient than a genetic algorithm. Also, our method converges at a fast rate and is suited to large-scaled task assignment problems.
机译:在分布式系统中,可能需要将许多应用程序任务分配给不同的处理器,以使系统成本最小化,并满足资源受限的约束。已经发现,针对该问题的大多数现有公式都是NP完全的,因此,对于大规模问题,找到精确的解决方案在计算上是棘手的。本文提出了一种混合粒子群优化算法,用于在合理的时间内找到接近最优的任务分配。实验结果表明,该方法比遗传算法更有效。而且,我们的方法收敛速度很快,适用于大规模任务分配问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号