首页> 外文期刊>Computer standards & interfaces >Harvesting Big Data in social science: A methodological approach for collecting online user-generated content
【24h】

Harvesting Big Data in social science: A methodological approach for collecting online user-generated content

机译:收集社会科学中的大数据:一种用于收集在线用户生成内容的方法论方法

获取原文
获取原文并翻译 | 示例

摘要

Online user-generated content is playing a progressively important role as information source for social scientists seeking for digging out value. Advances procedures and technologies to enable the capture, storage, management, and analysis of the data make possible to exploit increasing amounts of data generated directly by users. In that regard, Big Data is gaining meaning into social science from quantitative datasets side, which differs from traditional social science where collecting data has always been hard, time consuming, and resource intensive. Hence, the emergent field of computational social science is broadening researchers' perspectives. However, it also requires a multidisciplinary approach involving several and different knowledge areas. This paper outlines an architectural framework and methodology to collect Big Data from an electronic Word-of-Mouth (eWOM) website containing user-generated content Although the paper is written from the social science perspective, it must be also considered together with other complementary disciplines such as data accessing and computing.
机译:在线用户生成的内容作为寻求挖掘价值的社会科学家的信息来源,正发挥着越来越重要的作用。先进的过程和技术可以实现数据的捕获,存储,管理和分析,从而可以利用用户直接生成的越来越多的数据。在这方面,大数据正在从定量数据集方面进入社会科学的意义,这不同于传统的社会科学,在传统的社会科学中,收集数据一直很困难,费时且资源密集。因此,计算社会科学的新兴领域正在拓宽研究人员的视野。但是,这也需要涉及多个不同知识领域的多学科方法。本文概述了从包含用户生成内容的电子口碑(eWOM)网站收集大数据的体系结构框架和方法,尽管本文是从社会科学的角度撰写的,但也必须与其他互补学科一起考虑例如数据访问和计算。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号