首页> 外文期刊>Computer standards & interfaces >A dynamic multi-level collaborative filtering method for improved recommendations
【24h】

A dynamic multi-level collaborative filtering method for improved recommendations

机译:一种动态的多级协同过滤方法,可改善建议

获取原文
获取原文并翻译 | 示例

摘要

One of the most used approaches for providing recommendations in various online environments such as e-commerce is collaborative filtering. Although, this is a simple method for recommending items or services, accuracy and quality problems still exist. Thus, we propose a dynamic multi-level collaborative filtering method that improves the quality of the recommendations. The proposed method is based on positive and negative adjustments and can be used in different domains that utilize collaborative filtering to increase the quality of the user experience. Furthermore, the effectiveness of the proposed method is shown by providing an extensive experimental evaluation based on three real datasets and by comparisons to alternative methods.
机译:在各种在线环境(例如电子商务)中提供建议的最常用方法之一是协作过滤。尽管这是推荐项目或服务的简单方法,但准确性和质量问题仍然存在。因此,我们提出了一种动态的多层次协作过滤方法,可以提高建议的质量。所提出的方法基于正向和负向调整,可以在利用协作过滤来提高用户体验质量的不同领域中使用。此外,通过提供基于三个真实数据集的广泛实验评估并与替代方法进行比较,证明了所提出方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号