首页> 外文期刊>Computer speech and language >Recurrent neural network language generation for spoken dialogue systems
【24h】

Recurrent neural network language generation for spoken dialogue systems

机译:用于口语对话系统的经常性神经网络语言生成

获取原文
获取原文并翻译 | 示例

摘要

Natural Language Generation (NLG) is a critical component of spoken dialogue systems and it has a significant impact both on usability and perceived quality. Most existing NLG approaches in common use employ rules and heuristics and tend to generate rigid and stylised responses without the natural variation of human language. Moreover, these limitations also add significantly to development costs and make the delivery of cross-domain, cross-lingual dialogue systems especially complex and expensive. The first contribution of this paper is to present RNNLG, a Recurrent Neural Network (RNN)-based statistical natural language generator that can learn to generate utterances directly from dialogue act - utterance pairs without any predefined syntaxes or semantic alignments. The presentation includes a systematic comparison of the principal RNN-based NLG models available. The second contribution, is to test the scalability of the proposed system by adapting models from one domain to another. We show that by pairing RNN-based NLG models with a proposed data counterfeiting method and a discriminative objective function, a pre-trained model can be quickly adapted to different domains with only a few examples. All of the findings presented are supported by both corpus-based and human evaluations.
机译:自然语言生成(NLG)是口头对话系统的关键组成部分,对可用性和感知质量产生重大影响。大多数现有的NLG常见方法采用规则和启发式方法,并倾向于在没有人类语言的自然变化的情况下产生刚性和程式化的反应。此外,这些限制也会显着增加了开发成本,并使交付跨域,交叉对话系统尤其复杂和昂贵。本文的第一种贡献是呈现RNNLG,一种经常性神经网络(RNN)基础的统计自然语言发生器,其可以学习直接从对话动作 - 话语对中生成话语而没有任何预定义的语法或语义对齐。该演示文稿包括可用的基于RNN的基于RNN的NLG模型的系统比较。第二贡献,是通过将型号从一个域调整到另一个域来测试所提出的系统的可扩展性。我们表明,通过将基于RNN的NLG模型与提出的数据伪造方法和鉴别的目标函数配对,可以将预先训练的模型快速适应不同的域,只有几个例子。所提出的所有调查结果都由基于语料库和人类评估的支持。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号