首页> 外文期刊>Computer speech and language >ALTIS: A new algorithm for adaptive long-term SNR estimation in multi-talker babble
【24h】

ALTIS: A new algorithm for adaptive long-term SNR estimation in multi-talker babble

机译:ALTIS:多讲话者Babble中的自适应长期SNR估计算法

获取原文
获取原文并翻译 | 示例

摘要

We introduce a real-time capable algorithm which estimates the long-term signal to noise ratio (SNR) of the speech in multi-talker babble noise. In real-time applications, long-term SNR is calculated over a sufficiently long moving frame of the noisy speech ending at the current time. The algorithm performs the real-time long-term SNR estimation by averaging "speech-likeness" values of multiple consecutive short-frames of the noisy speechwhich collectively form a long-frame with an adaptive length. The algorithm is calibrated to be insensitive to short-term fluctuations and transient changes in speech or noise level. However, it quickly responds to non-transient changes in long-term SNR by adjusting the duration of the long-frame on which the long-term SNR is measured. This ability is obtained by employing an event detector and adaptive frame duration. The event detector identifies non-transient changes of the long-term SNR and optimizes the duration of the long-frame accordingly. The algorithm was trained and tested for randomly generated speech samples corrupted with multi-talker babble. In addition to its ability to provide an adaptive long-term SNR estimation in a dynamic noisy situation, the evaluation results show that the algorithm outperforms the existing overall SNR estimation methods in multi-talker babble over a wide range of number of talkers and SNRs. The relatively low computational cost and the ability to update the estimated long-term SNR several times per second make this algorithm capable of operating in real-time speech processing applications. (C) 2019 Elsevier Ltd. All rights reserved.
机译:我们介绍了一种实时能力的算法,该算法估计了多讲车禁止噪声中语音的长期信噪比(SNR)。在实时应用中,长期SNR计算在当前时间的嘈杂语音的足够长的移动框架上。该算法通过平均嘈杂的语音的多个连续短帧的值的值来执行实时的长期SNR估计,其主要形成具有自适应长度的长帧。算法被校准以对短期波动和语音或噪声水平的瞬态变化不敏感。然而,它通过调节测量长期SNR的长帧的持续时间来快速响应长期SNR的非瞬态变化。通过采用事件检测器和自适应帧持续时间来获得这种能力。事件检测器识别长期SNR的非瞬态变化,并相应地优化长帧的持续时间。算法训练并测试了随机生成的语音样本,用多讲话者唠叨损坏。除了在动态嘈杂情况下提供自适应长期SNR估计的能力之外,评估结果表明,该算法在多个讲话者和SNR中讲述多讲车中的现有整体SNR估计方法。计算成本相对较低,每秒多次更新估计的长期SNR的能力使得该算法能够在实时语音处理应用中运行。 (c)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号