首页> 外文期刊>Computer speech and language >Residual convolutional neural network with attentive feature pooling for end-to-end language identification from short-duration speech
【24h】

Residual convolutional neural network with attentive feature pooling for end-to-end language identification from short-duration speech

机译:剩余卷积神经网络与细小的特征汇总,用于短期语言的端到端语言识别

获取原文
获取原文并翻译 | 示例

摘要

The problem of language identification from speech is tackled in this work. Residual convolutional neural networks are employed to this end, aiming at exploiting the ability of such architectures to take into account large contextual segments of input data. Moreover, learnable attention mechanisms are introduced on top of the convolutional stack for data-driven feature pooling across time, enabling the computation of fixed-dimension representations given varying-length speech segments as input. Training is performed using a combination of language identification and metric learning via triplet loss minimization, aimed at enforcing class separability within the embeddings space. Evaluation is performed across different conditions, such as multi-class classification, short-duration test utterances, and confusing languages, for the closed-set case, while open-set performance is evaluated with the introduction of unseen languages. At test time, end-to-end scoring along with cosine similarity and PLDA are employed, outperforming state-of-the-art benchmark methods, such as i-vectors by improving the average cost by 30% to 40% depending on the evaluation condition. (C) 2019 Elsevier Ltd. All rights reserved.
机译:在这项工作中解决了语言识别的问题。剩余的卷积神经网络用于此目的,旨在利用这种架构考虑到输入数据的大型语境片段的能力。此外,在卷积堆栈的顶部引入了学习的注意机制,用于跨时间的数据驱动特征池,使得定为将变化长度的语音段给出的固定维度表示作为输入。使用Triplet丢失最小化的语言识别和度量学习的组合进行训练,旨在强制嵌入空间内的类别可分离。评估在不同的条件下进行,例如多级分类,短持续时间测试话语和混乱的语言,用于闭合箱,而在引入观看语言的情况下评估开放式性能。在测试时间,采用端到端的速度以及余弦相似性和PLDA,优于最先进的基准方法,例如i-vircor,根据评估,通过将平均成本提高30%至40%状况。 (c)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号