首页> 外文期刊>Computer speech and language >Neural sentence fusion for diversity driven abstractive multi-document summarization
【24h】

Neural sentence fusion for diversity driven abstractive multi-document summarization

机译:多样性驱动抽象多文件汇总的神经句子融合

获取原文
获取原文并翻译 | 示例

摘要

The lack of multi-document based models and the inaccuracy in representing multiple long documents into a fixed size vector inspired us to solve abstractive multi-document summarization. Also, there is lack of good multi-document based human-authored datasets to train any encoder-decoder models. To overcome this, we have designed complementary models for two different tasks such as sentence clustering and neural sentence fusion. In this work, we minimize the risk of producing incorrect fact by encoding a related set of sentences as an input to the encoder. We have applied our complementary models to implement a full abstractive multi-document summarization system which simultaneously considers importance, coverage, and diversity under a desired length limit. We conduct extensive experiments for all the proposed models which bring significant improvements over the state-of-the-art methods across different evaluation metrics. (C) 2019 Elsevier Ltd. All rights reserved.
机译:缺乏基于多文档的模型和代表多个长文档的不准确性激发了我们解决了抽象的多文件摘要。此外,缺少基于良好的基于​​多文档的人撰写的数据集,用于培训任何编码器解码器模型。为了克服这一点,我们为两个不同的任务设计了互补模型,如句子聚类和神经句子融合。在这项工作中,我们通过将相关的一组句子作为对编码器的输入来最小化产生不正确事实的风险。我们已应用我们的互补模型来实现全抽象多文件摘要系统,同时考虑所需的长度限制的重要性,覆盖和多样性。我们对所有拟议模型进行了广泛的实验,这在不同的评估指标上对最先进的方法带来了显着改善。 (c)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号