首页> 外文期刊>Computer speech and language >Sequence labeling to detect stuttering events in read speech
【24h】

Sequence labeling to detect stuttering events in read speech

机译:序列标记可检测阅读语音中的口吃事件

获取原文
获取原文并翻译 | 示例

摘要

Stuttering is a speech disorder that, if treated during childhood, may be prevented from persisting into adolescence. A clinician must first determine the severity of stuttering, assessing a child during a conversational or reading task, recording each instance of disfluency, either in real time, or after transcribing the recorded session and analysing the transcript. The current study evaluates the ability of two machine learning approaches, namely conditional random fields (CRF) and bi-directional long-short-term memory (BLSTM), to detect stuttering events in transcriptions of stuttering speech. The two approaches are compared for their performance both on ideal hand-transcribed data and also on the output of automatic speech recognition (ASR). We also study the effect of data augmentation to improve performance. A corpus of 35 speakers' read speech (13K words) was supplemented with a corpus of 63 speakers' spontaneous speech (11K words) and an artificially-generated corpus (50K words). Experimental results show that, without feature engineering, BLSTM classifiers outperform CRF classifiers by 33.6%. However, adding features to support the CRF classifier yields performance improvements of 45% and 18% over the CRF baseline and BLSTM results, respectively. Moreover, adding more data to train the CRF and BLSTM classifiers consistently improves the results.
机译:口吃是一种语言障碍,如果在儿童时期进行治疗,可以防止其持续到青春期。临床医生必须首先确定口吃的严重程度,在进行对话或阅读任务时评估孩子的身分,实时或在记录所记录的会话记录并分析成绩单之后,记录每个不满情况。当前的研究评估了两种机器学习方法(即条件随机场(CRF)和双向长短期记忆(BLSTM))检测口吃语音转录中的口吃事件的能力。比较了两种方法在理想的手动转录数据和自动语音识别(ASR)输出方面的性能。我们还研究了数据增强对提高性能的影响。一个由35个说话者的阅读语音(1.3万个单词)的语料库,再加上一个由63个说话者的自发语音(11K个单词)和一个人工生成的语料库(5万个单词)的语料库。实验结果表明,在没有特征工程的情况下,BLSTM分类器的性能优于CRF分类器33.6%。但是,添加支持CRF分类器的功能可使性能分别比CRF基准和BLSTM结果提高45%和18%。此外,添加更多数据来训练CRF和BLSTM分类器可以持续改善结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号