首页> 外文期刊>Computer speech and language >Dialogue breakdown detection robust to variations in annotators and dialogue systems
【24h】

Dialogue breakdown detection robust to variations in annotators and dialogue systems

机译:对话故障检测对注释器和对话系统的变化具有鲁棒性

获取原文
获取原文并翻译 | 示例

摘要

Dialogue breakdown is a significant problem in conversational agents. Timely breakdown detection helps the agents quickly recover from mistakes, minimizing the impact on user experience. In this paper, we focus on two problems: variations in determining a response that breakdowns a conversation i.e., subjectivity, and variations in breakdown types due to designs of conversational agents, i.e., variationality. To address the subjectivity, which decreases the agreement rate among annotators, our methods detect a dialogue breakdown by ensembling detectors trained by different sets of annotators that are grouped using a clustering algorithm. To address the variationality, our methods apply two types of detector architectures to capture global and local breakdowns. The long short-term memory detector considers the global context and the convolutional neural networks detector is sensitive to the local characteristics. The ensemble of all detectors makes a final judgment. The results of the Japanese task in the Dialogue Breakdown Detection Challenge 3 (DBDC3) confirm that our approach significantly outperforms the baseline, which uses the conventional conditional random field. Detailed error analysis reveals that our encoders based on a convolutional neural network and a long short-term memory have different characteristics. It also confirms the effects of annotator clustering. (C) 2018 Elsevier Ltd. All rights reserved.
机译:对话故障是会话代理中的重要问题。及时的故障检测可以帮助座席快速从错误中恢复,从而最大程度地减少对用户体验的影响。在本文中,我们关注两个问题:确定中断会话的响应的变化(即主观性)和由于会话代理的设计而导致的故障类型的变化(即变化性)。为了解决主观性,这会降低注释者之间的一致率,我们的方法通过集合由使用聚类算法分组的不同注释者集训练的检测器来检测对话崩溃。为了解决变化问题,我们的方法应用了两种类型的检测器架构来捕获全局和局部故障。长短期记忆检测器考虑了全局上下文,卷积神经网络检测器对局部特征敏感。所有探测器的集合做出最终判断。对话崩溃检测挑战3(DBDC3)中日语任务的结果证实,我们的方法大大优于使用传统条件随机场的基线。详细的误差分析表明,我们基于卷积神经网络和长时短时记忆的编码器具有不同的特性。它还证实了注释器聚类的效果。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号