首页> 外文期刊>Computer speech and language >Reducing footprint of unit selection based text-to-speech system using compressed sensing and sparse representation
【24h】

Reducing footprint of unit selection based text-to-speech system using compressed sensing and sparse representation

机译:使用压缩感测和稀疏表示来减少基于单元选择的文本语音转换系统的占用空间

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we have explored the framework of compressed sensing (CS) and sparse representation (SR) to reduce the footprint of unit selection based speech synthesis (USS) system. In the CS based framework, footprint reduction is achieved by storing either CS measurements or signs of CS measurements, instead of storing the raw speech waveforms. For efficient reconstruction using CS measurements, the speech signal should have a sparse representation over a predefined basis/dictionary. Hence, in this work, we have also studied the effectiveness of sparse representation for compressing the speech waveform. The experimental results are demonstrated using an analytical dictionary (DCT matrix), and several learned dictionaries, derived using K-singular value decomposition (KSVD), method of optimal directions (MOD), greedy adaptive dictionary (GAD) and principal component analysis (PCA) algorithms. To further increase compression in SR based framework of footprint reduction, the significant coefficients of sparse vector are selected adaptively, based on the type of speech segment (e.g., voiced, unvoiced etc.). Experimental studies on two different Indian languages suggest that CS/SR based footprint reduction methods can be used as an alternative to existing compression methods employed in USS system.
机译:在本文中,我们探索了压缩感知(CS)和稀疏表示(SR)的框架,以减少基于单元选择的语音合成(USS)系统的占用空间。在基于CS的框架中,通过存储CS测量值或CS测量符号来实现占用空间的减少,而不是存储原始语音波形。为了使用CS测量进行有效的重建,语音信号应在预定义的基础/词典上具有稀疏表示。因此,在这项工作中,我们还研究了稀疏表示对压缩语音波形的有效性。使用解析字典(DCT矩阵)以及使用K奇异值分解(KSVD),最佳方向方法(MOD),贪婪自适应字典(GAD)和主成分分析(PCA)派生的一些学习词典来证明实验结果)算法。为了在基于SR的足迹减少框架中进一步增加压缩率,基于语音段的类型(例如,浊音,清音等)自适应地选择稀疏矢量的重要系数。在两种不同的印度语言上进行的实验研究表明,基于CS / SR的占用空间减少方法可以用作USS系统中现有压缩方法的替代方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号