首页> 外文期刊>Computer speech and language >Buried Markov models: a graphical-modeling approach to automatic speech recognition
【24h】

Buried Markov models: a graphical-modeling approach to automatic speech recognition

机译:隐马尔可夫模型:自动语音识别的图形建模方法

获取原文
获取原文并翻译 | 示例

摘要

In this work, buried Markov models (BMM) are introduced. In a BMM, a Markov chain state at time t determines the conditional independence patterns that exist between random variables lying within a local time window surrounding t. This model is motivated by and can be fully described by "graphical models", a general technique to describe families of probability distributions. In the paper, it is shown how information-theoretic criterion functions can be used to induce sparse, discriminative, and class-conditional network structures that yield an optimal approximation to the class posterior probability, and therefore are useful for classification tasks such as speech recognition. Using a new structure learning heuristic, the resulting structurally discriminative models are tested on a medium-vocabulary isolated-word speech recognition task. It is demonstrated that discriminatively structured BMMs, when trained in a maximum likelihood setting using EM, can outperform both hidden Markov models (HMMs) and other dynamic Bayesian networks with a similar number of parameters.
机译:在这项工作中,引入了隐马尔可夫模型(BMM)。在BMM中,时间t的马尔可夫链状态确定存在于围绕t的局部时间窗口内的随机变量之间存在的条件独立性模式。该模型受“图形模型”的启发,并且可以用“图形模型”进行全面描述,“图形模型”是描述概率分布族的通用技术。在本文中,显示了如何使用信息理论标准函数来诱导稀疏,区分和类条件网络结构,这些结构可产生类后验概率的最佳近似值,因此可用于诸如语音识别之类的分类任务。使用新的结构学习启发法,在中等词汇量孤立词语音识别任务上测试了所得的结构判别模型。事实证明,当使用EM在最大似然设置下训练时,判别结构化的BMM可以胜过隐马尔可夫模型(HMM)和其他具有相似数量参数的动态贝叶斯网络。

著录项

  • 来源
    《Computer speech and language》 |2003年第3期|p.213-231|共19页
  • 作者

    Jeff A. Bilmes;

  • 作者单位

    Department of Electrical Engineering, Signal and Image Processing, University of Washington, 418 EE/CSE, Campus Box 352 500, Seattle, WA 98195-2500, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 计算技术、计算机技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号