首页> 外文期刊>Computer speech and language >Prior knowledge guided maximum expected likelihood based model selection and adaptation for nonnative speech recognition
【24h】

Prior knowledge guided maximum expected likelihood based model selection and adaptation for nonnative speech recognition

机译:先验知识指导基于最大期望似然的模型选择和自适应

获取原文
获取原文并翻译 | 示例

摘要

In this paper, an improved method of model complexity selection for nonnative speech recognition is proposed by using maximum a posteriori (MAP) estimation of bias distributions. An algorithm is described for estimating hyper-parameters of the priors of the bias distributions, and an automatic accent classification algorithm is also proposed for integration with dynamic model selection and adaptation. Experiments were performed on the WSJ1 task with American English speech, British accented speech, and mandarin Chinese accented speech. Results show that the use of prior knowledge of accents enabled more reliable estimation of bias distributions with very small amounts of adaptation speech, or without adaptation speech. Recognition results show that the new approach is superior to the previous maximum expected likelihood (MEL) method, especially when adaptation data are very limited.
机译:本文提出了一种改进的用于非本地语音识别的模型复杂度选择方法,该方法通过使用偏差分布的最大后验(MAP)估计来进行。描述了一种用于估计偏差分布先验的超参数的算法,并且还提出了一种用于与动态模型选择和自适应集成的自动重音分类算法。在WSJ1任务上进行了实验,分别使用了美国英语语音,英国口音和普通话中文口音。结果表明,使用重音的先验知识可以在使用非常少量的自适应语音或不使用自适应语音的情况下更可靠地估计偏差分布。识别结果表明,该新方法优于以前的最大期望似然(MEL)方法,尤其是在自适应数据非常有限的情况下。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号