首页> 外文期刊>Computer speech and language >Efficient data selection for speech recognition based on prior confidence estimation using speech and monophone models
【24h】

Efficient data selection for speech recognition based on prior confidence estimation using speech and monophone models

机译:基于语音和单音模型的先验置信度估计的语音识别有效数据选择

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes an efficient speech data selection technique that can identify those data that will be well recognized. Conventional confidence measure techniques can also identify well-recognized speech data. However, those techniques require a lot of computation time for speech recognition processing to estimate confidence scores. Speech data with low confidence should not go through the time-consuming recognition process since they will yield erroneous spoken documents that will eventually be rejected. The proposed technique can select the speech data that will be acceptable for speech recognition applications. It rapidly selects speech data with high prior confidence based on acoustic likelihood values and using only speech and monophone models. Experiments show that the proposed confidence estimation technique is over 50 times faster than the conventional posterior confidence measure while providing equivalent data selection performance for speech recognition and spoken document retrieval.
机译:本文提出了一种有效的语音数据选择技术,可以识别那些将被很好地识别的数据。传统的置信度测量技术也可以识别公认的语音数据。但是,这些技术需要大量的计算时间来进行语音识别处理以估计置信度得分。具有低置信度的语音数据不应经过耗时的识别过程,因为它们会产生错误的语音文档,最终将被拒绝。所提出的技术可以选择语音识别应用可接受的语音数据。它基于声学似然值并仅使用语音和单音电话模型快速选择具有较高先验置信度的语音数据。实验表明,所提出的置信度估计技术比常规的后置置信度测量快50倍以上,同时为语音识别和语音文档检索提供了等效的数据选择性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号