首页> 外文期刊>Computer speech and language >Speaker-adaptive learning of resonance targets in a hidden trajectory model of speech coarticulation
【24h】

Speaker-adaptive learning of resonance targets in a hidden trajectory model of speech coarticulation

机译:语音共鸣的隐藏轨迹模型中共振目标的说话人自适应学习

获取原文
获取原文并翻译 | 示例

摘要

A novel speaker-adaptive learning algorithm is developed and evaluated for a hidden trajectory model of speech coarticulation and reduction. Central to this model is the process of bi-directional (forward and backward) filtering of the vocal tract resonance (VTR) target sequence. The VTR targets are key parameters of the model that control the hidden VTR's dynamic behavior and the subsequent acoustic properties (those of the cepstral vector sequence). We describe two techniques for training these target parameters: (1) speaker-independent training that averages out the target variability over all speakers in the training set; and (2) speaker-adaptive training that takes into account the variability in the target values among individual speakers. The adaptive learning is applied also to adjust each unknown test speaker's target values towards their true values. All the learning algorithms make use of the results of accurate VTR tracking as developed in our earlier work. In this paper, we present details of the learning algorithms and the analysis results comparing speaker-independent and speaker-adaptive learning. We also describe TIMIT phone recognition experiments and results, demonstrating consistent superiority of speaker adaptive learning over speaker-independent one measured by the phonetic recognition performance.
机译:开发了一种新颖的说话人自适应学习算法,并针对语音协同表达和消隐的隐藏轨迹模型进行了评估。该模型的中心是声道(VTR)目标序列的双向(向前和向后)滤波过程。 VTR目标是模型的关键参数,可控制隐藏的VTR的动态行为和随后的声学特性(倒频谱矢量序列的那些)。我们描述了两种用于训练这些目标参数的技术:(1)与说话者无关的训练,其将训练集中所有说话者的目标变异性平均化; (2)说话人自适应训练,其中要考虑到各个说话人之间目标值的差异。自适应学习还应用于将每个未知测试讲话者的目标值调整为其真实值。所有学习算法都利用了我们早期工作中开发的准确的VTR跟踪结果。在本文中,我们介绍了学习算法的详细信息以及比较独立于说话者和自适应说话者的学习的分析结果。我们还描述了TIMIT电话识别实验和结果,证明了说话人自适应学习相对于独立于说话人的语音学习性能所具有的优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号