首页> 外文期刊>Computer speech and language >Morpho-syntactic post-processing of N-best lists for improved French automatic speech recognition
【24h】

Morpho-syntactic post-processing of N-best lists for improved French automatic speech recognition

机译:N最佳列表的词法语法后处理,可改善法语自动语音识别

获取原文
获取原文并翻译 | 示例

摘要

Many automatic speech recognition (ASR) systems rely on the sole pronunciation dictionaries and language models to take into account information about language. Implicitly, morphology and syntax are to a certain extent embedded in the language models but the richness of such linguistic knowledge is not exploited. This paper studies the use of morpho-syntactic (MS) information in a post-processing stage of an ASR system, by reordering N-best lists. Each sentence hypothesis is first part-of-speech tagged. A morpho-syntactic score is computed over the tag sequence with a long-span language model and combined to the acoustic and word-level language model scores. This new sentence-level score is finally used to rescore N-best lists by reranking or consensus. Experiments on a French broadcast news task show that morpho-syntactic knowledge improves the word error rate and confidence measures. In particular, it was observed that the errors corrected are not only agreement errors and errors on short grammatical words but also other errors on lexical words where the hypothesized lemma was modified.
机译:许多自动语音识别(ASR)系统依靠唯一的发音词典和语言模型来考虑有关语言的信息。隐式地,形态和语法在某种程度上嵌入了语言模型中,但是这种语言知识的丰富性并未得到利用。本文通过对N-最佳列表进行重新排序,研究了ASR系统的后处理阶段中形态语法(MS)信息的使用。每个句子假设都被首先标记为词性标记。使用大跨度语言模型对标记序列计算词法-句法得分,并将其组合为声学和单词级语言模型得分。最终,该新的句子级别得分用于通过重新排序或达成共识来重排N个最佳列表。在法国广播新闻任务中进行的实验表明,语素-句法知识可以提高单词错误率和置信度。特别地,观察到校正的错误不仅是一致性错误和短语法单词的错误,而且还包括修改了假设引理的词汇单词的其他错误。

著录项

  • 来源
    《Computer speech and language》 |2010年第4期|p.663-684|共22页
  • 作者单位

    Univ. Rennes 1, IRISA (UMR 6074), Campus Universitaire de Beaulieu, 35042 Rennes Cedex, France DIRO - Universite de Montreal, Canada;

    rnCNRS, IRISA (UMR 6074), Campus Universitaire de Beaulieu, 35042 Rennes Cedex, France;

    INSA Rennes, IRISA (UMR 6074), Campus Universitaire de Beaulieu, 35042 Rennes Cedex, France;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    speech recognition; morpho-syntax; tagging; confidence measure;

    机译:语音识别;形态语法标记;置信度;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号