首页> 外文期刊>Computer speech and language >Eigenvoice modelling for cross likelihood ratio based speaker clustering: A Bayesian approach
【24h】

Eigenvoice modelling for cross likelihood ratio based speaker clustering: A Bayesian approach

机译:基于交叉似然比的说话人聚类的特征语音建模:贝叶斯方法

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes the use of Bayesian approaches with the cross likelihood ratio (CLR) as a criterion for speaker clustering within a speaker diarization system, using eigenvoice modelling techniques. The CLR has previously been shown to be an effective decision criterion for speaker clustering using Gaussian mixture models. Recently, eigenvoice modelling has become an increasingly popular technique, due to its ability to adequately represent a speaker based on sparse training data, as well as to provide an improved capture of differences in speaker characteristics. The integration of eigenvoice modelling into the CLR framework to capitalize on the advantage of both techniques has also been shown to be beneficial for the speaker clustering task. Building on that success, this paper proposes the use of Bayesian methods to compute the conditional probabilities in computing the CLR, thus effectively combining the eigenvoice-CLR framework with the advantages of a Bayesian approach to the diarization problem. Results obtained on the 2002 Rich Transcription (RT-02) Evaluation dataset show an improved clustering performance, resulting in a 33.5% relative improvement in the overall diarization error rate (DER) compared to the baseline system.
机译:本文提出使用贝叶斯方法和交叉似然比(CLR)作为说话人二分系统中说话人聚类的标准,并使用特征语音建模技术。先前已证明CLR是使用高斯混合模型进行说话人聚类的有效决策标准。最近,本征语音建模已经成为一种越来越流行的技术,这是由于其能够基于稀疏的训练数据充分代表说话者,并且能够更好地捕捉说话者特征的差异,因此成为一种越来越流行的技术。还已经证明,将本征语音模型集成到CLR框架中以利用两种技术的优势对于说话者聚类任务是有益的。在此成功的基础上,本文提出了使用贝叶斯方法来计算计算CLR时的条件概率,从而有效地将特征语音-CLR框架与贝叶斯方法的优点相结合。在2002 Rich Transcription(RT-02)评估数据集上获得的结果显示出改进的聚类性能,与基线系统相比,总体二叉误差率(DER)相对提高了33.5%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号