首页> 外文期刊>Computer speech and language >Integration of beamforming and uncertainty-of-observation techniques for robust ASR in multi-source environments
【24h】

Integration of beamforming and uncertainty-of-observation techniques for robust ASR in multi-source environments

机译:集成了波束成形和观测不确定性技术,可在多源环境中实现强大的ASR

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a new approach for increasing the robustness of multi-channel automatic speech recognition in noisy and reverberant multi-source environments. The proposed method uses uncertainty propagation techniques to dynamically compensate the speech features and the acoustic models for the observation uncertainty determined at the beamforming stage. We present and analyze two methods that allow integrating classical multi-channel signal processing approaches like delay and sum beamformers or Zelinski-type Wiener filters, with uncertainty-of-observation techniques like uncertainty decoding or modified imputation. An analysis of the results on the PASCAL-CHiME task shows that this approach consistently outperforms conventional beamformers with a minimal increase in computational complexity. The use of dynamic compensation based on observation uncertainty also outperforms conventional static adaptation with no need of adaptation data.
机译:本文提出了一种新方法,可在嘈杂和混响多源环境中提高多通道自动语音识别的鲁棒性。所提出的方法使用不确定性传播技术来动态补偿语音特征和声学模型,以用于在波束形成阶段确定观测不确定性。我们介绍并分析了两种方法,这些方法可以将经典的多通道信号处理方法(如延迟和求和波束形成器或Zelinski型维纳滤波器)与不确定性观察技术(如不确定性解码或修正归因)集成在一起。对PASCAL-CHiME任务的结果进行的分析表明,该方法始终优于传统的波束形成器,并且计算复杂性的增加最小。基于观测不确定性的动态补偿的使用也优于传统的静态自适应,无需自适应数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号