首页> 外文期刊>Computer speech and language >Enriching machine-mediated speech-to-speech translation using contextual information
【24h】

Enriching machine-mediated speech-to-speech translation using contextual information

机译:使用上下文信息丰富机器介导的语音翻译

获取原文
获取原文并翻译 | 示例

摘要

Conventional approaches to speech-to-speech (S2S) translation typically ignore key contextual information such as prosody, emphasis, discourse state in the translation process. Capturing and exploiting such contextual information is especially important in machine-mediated S2S translation as it can serve as a complementary knowledge source that can potentially aid the end users in improved understanding and disambiguation. In this work, we present a general framework for integrating rich contextual information in S2S translation. We present novel methodologies for integrating source side context in the form of dialog act (DA) tags, and target side context using prosodic word prominence. We demonstrate the integration of the DA tags in two different statistical translation frameworks, phrase-based translation and a bag-of-words lexical choice model. In addition to producing interpretable DA annotated target language translations, we also obtain significant improvements in terms of automatic evaluation metrics such as lexical selection accuracy and BLEU score. Our experiments also indicate that finer representation of dialog information such as yes-no questions, wh-questions and open questions are the most useful in improving translation quality. For target side enrichment, we employ factored translation models to integrate the assignment and transfer of prosodic word prominence (pitch accents) during translation. The factored translation models provide significant improvement in assignment of correct pitch accents to the target words in comparison with a post-processing approach. Our framework is suitable for integrating any word or utterance level contextual information that can be reliably detected (recognized) from speech and/or text.
机译:语音到语音(S2S)翻译的常规方法通常会忽略翻译过程中的关键上下文信息,例如韵律,重点,话语状态。在机器介导的S2S翻译中,捕获和利用此类上下文信息尤为重要,因为它可以作为补充知识源,可以潜在地帮助最终用户改善理解和消除歧义。在这项工作中,我们提出了一个在S2S翻译中集成丰富上下文信息的通用框架。我们提出了新颖的方法,以对话行为(DA)标记的形式集成源端上下文,并使用韵律单词突出来实现目标端上下文。我们展示了DA标记在两种不同的统计翻译框架中的集成:基于短语的翻译和词袋词法选择模型。除了产生可解释的带有DA注释的目标语言翻译外,我们还在词汇选择准确度和BLEU得分等自动评估指标方面获得了显着改进。我们的实验还表明,更好地表达对话信息(例如是-否问题,wh问题和公开问题)对提高翻译质量最有用。对于目标方面的丰富,我们采用因子翻译模型来整合翻译过程中韵律单词突出(音高重音)的分配和传递。与后处理方法相比,分解式翻译模型在将正确的音高重音分配给目标单词方面提供了显着的改进。我们的框架适用于集成可以从语音和/或文本中可靠地检测(识别)的任何单词或话语级别的上下文信息。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号