首页> 外文期刊>Computer speech and language >Incorporating local information of the acoustic environments to MAP-based feature compensation and acoustic model adaptation
【24h】

Incorporating local information of the acoustic environments to MAP-based feature compensation and acoustic model adaptation

机译:将声学环境的本地信息整合到基于MAP的特征补偿和声学模型自适应中

获取原文
获取原文并翻译 | 示例

摘要

The maximum a posteriori (MAP) criterion is popularly used for feature compensation (FC) and acoustic model adaptation (MA) to reduce the mismatch between training and testing data sets. MAP-based FC and MA require prior densities of mapping function parameters, and designing suitable prior densities plays an important role in obtaining satisfactory performance. In this paper, we propose to use an environment structuring framework to provide suitable prior densities for facilitating MAP-based FC and MA for robust speech recognition. The framework is constructed in a two-stage hierarchical tree structure using environment clustering and partitioning processes. The constructed framework is highly capable of characterizing local information about complex speaker and speaking acoustic conditions. The local information is utilized to specify hyper-parameters in prior densities, which are then used in MAP-based FC and MA to handle the mismatch issue. We evaluated the proposed framework on Aurora-2, a connected digit recognition task, and Aurora-4, a large vocabulary continuous speech recognition (LVCSR) task. On both tasks, experimental results showed that with the prepared environment structuring framework, we could obtain suitable prior densities for enhancing the performance of MAP-based FC and MA.
机译:最大后验(MAP)标准通常用于特征补偿(FC)和声学模型适应(MA),以减少训练和测试数据集之间的不匹配。基于MAP的FC和MA需要映射功能参数的先验密度,而设计合适的先验密度在获得令人满意的性能方面起着重要作用。在本文中,我们建议使用一种环境结构框架来提供合适的先验密度,以促进基于MAP的FC和MA进行健壮的语音识别。该框架使用环境聚类和分区过程以两阶段的分层树结构构建。所构建的框架具有很高的能力,可以表征有关复杂说话者和说话声学条件的本地信息。利用本地信息以先验密度指定超参数,然后将其用于基于MAP的FC和MA中以处理不匹配问题。我们评估了有关连接数字识别任务Aurora-2和大型词汇连续语音识别(LVCSR)任务Aurora-4的拟议框架。在这两个任务上,实验结果表明,使用准备好的环境结构框架,我们可以获得适当的先验密度,以增强基于MAP的FC和MA的性能。

著录项

  • 来源
    《Computer speech and language》 |2014年第3期|709-726|共18页
  • 作者单位

    Research Center for Information Technology Innovation, Academia Sinica, No. 128, Acudemia Road, Section 2, Nanking, Taipei 11529, Taiwan;

    National Institute of Information and Communications Technology (NICT), 3-5 Hikaridai, Keihanna Science City 6190289, Japan;

    National Institute of Information and Communications Technology (NICT), 3-5 Hikaridai, Keihanna Science City 6190289, Japan;

    Research Center for Information Technology Innovation, Academia Sinica, No. 128, Acudemia Road, Section 2, Nanking, Taipei 11529, Taiwan;

    National Institute of Information and Communications Technology (NICT), 3-5 Hikaridai, Keihanna Science City 6190289, Japan;

    National Institute of Information and Communications Technology (NICT), 3-5 Hikaridai, Keihanna Science City 6190289, Japan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    MAP; Feature compensation; Acoustic model adaptation; Local information; Hyper-parameter specification; Noise robustness;

    机译:地图;特征补偿;声学模型适应;当地信息;超参数规范;噪声鲁棒性;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号