首页> 外文期刊>Computer speech and language >Using decision tree to hybrid morphology generation of Persian verb for English-Persian translation
【24h】

Using decision tree to hybrid morphology generation of Persian verb for English-Persian translation

机译:使用决策树进行波斯语动词的混合形态生成以进行英语-波斯语翻译

获取原文
获取原文并翻译 | 示例

摘要

Languages such as English need to be morphologically analyzed in translation into morphologically rich languages such as Persian. Analyzing the output of English to Persian machine translation systems illustrates that Persian morphology comes with many challenges especially in the verb conjugation. In this paper, we investigate three ways to deal with the morphology of Persian verb in machine translation (MT): no morphology generation in statistical MT, rule-based morphology generation in rule-based MT and a hybrid-model-independent morphology generation. By model-independent we mean that it is not based on statistical or rule-based MT and could be applied to any English to Persian MT as a post-processor. We select Google translator (translate.google.com) to show the performance of a statistical MT without any morphology generation component for the verb conjugation. Rule-based morphology generation is implemented as a part of a rule-based MT. Finally, we enrich the rule-based approach by statistical methods and information to present a hybrid model. A set of linguistically motivated features are defined using both English and Persian linguistic knowledge obtained from a parallel corpus. Then we make a model to predict six morphological features of the verb in Persian using decision tree classifier and generate an inflected verb form. In a real translation process, by applying our model to the output of Google translator and a rule-based MT as a post-processor, we achieve an improvement of about 0.7% absolute BLEU score in the best case. When we are given the gold lemma in our reference experiments, using the most common feature values as a baseline shows an improvement of almost 2.8% absolute BLEU score on a test set containing 15K sentences.
机译:在翻译成形态丰富的语言(例如波斯语)时,需要对英语等语言进行形态分析。分析英语到波斯机器翻译系统的输出表明,波斯语形态面临许多挑战,尤其是在动词缀合方面。在本文中,我们研究了在机器翻译(MT)中处理波斯动词形态的三种方法:统计MT中没有形态生成,基于规则MT中基于规则的形态生成以及与混合模型无关的形态生成。所谓与模型无关,是指它不是基于统计或基于规则的MT,并且可以作为后处理程序应用于任何英语到波斯MT。我们选择Google翻译器(translate.google.com)来显示统计MT的性能,而该动词缀不包含任何形态生成组件。基于规则的形态生成被实现为基于规则的MT的一部分。最后,我们通过统计方法和信息丰富了基于规则的方法,以提出一种混合模型。使用从平行语料库获得的英语和波斯语语言知识来定义一组语言动机特征。然后,我们建立一个模型,使用决策树分类器预测波斯语中动词的六个形态特征,并生成一个变化的动词形式。在实际的翻译过程中,通过将我们的模型应用于Google翻译器的输出以及作为后处理程序的基于规则的MT,在最佳情况下,我们的绝对BLEU得分提高了约0.7%。当我们在参考实验中获得黄金引理时,使用最常见的特征值作为基线显示,在包含15K句子的测试集上,绝对BLEU得分提高了近2.8%。

著录项

  • 来源
    《Computer speech and language》 |2015年第1期|145-159|共15页
  • 作者单位

    School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran;

    School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran,School of Computer Science, Institute for Research in Fundamental Science (IPM), P. O. Box 19395-5746, Tehran, Iran;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Persian verb morphology; Morphological analysis; Machine translation; SMT; Rule-based MT; Decision tree;

    机译:波斯语动词形态;形态分析;机器翻译;SMT;基于规则的机器翻译;决策树;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号