首页> 外文期刊>Computer speech and language >Feature selection for spontaneous speech analysis to aid in Alzheimer's disease diagnosis: A fractal dimension approach
【24h】

Feature selection for spontaneous speech analysis to aid in Alzheimer's disease diagnosis: A fractal dimension approach

机译:自发语音分析的特征选择,以帮助阿尔茨海默氏病诊断:分形维方法

获取原文
获取原文并翻译 | 示例

摘要

Alzheimer's disease (AD) is the most prevalent form of degenerative dementia; it has a high socio-economic impact in Western countries. The purpose of our project is to contribute to earlier diagnosis of AD and allow better estimates of its severity by using automatic analysis performed through new biomarkers extracted through non-invasive intelligent methods. The method selected is based on speech biomarkers derived from the analysis of spontaneous speech (SS). Thus the main goal of the present work is feature search in SS, aiming at pre-clinical evaluation whose results can be used to select appropriate tests for AD diagnosis. The feature set employed in our earlier work offered some hopeful conclusions but failed to capture the nonlinear dynamics of speech that are present in the speech waveforms. The extra information provided by the nonlinear features could be especially useful when training data is limited. In this work, the fractal dimension (FD) of the observed time series is combined with linear parameters in the feature vector in order to enhance the performance of the original system while controlling the computational cost.
机译:阿尔茨海默氏病(AD)是退化性痴呆的最普遍形式;它在西方国家具有很高的社会经济影响。我们项目的目的是通过使用通过非侵入性智能方法提取的新生物标记物进行的自动分析,对AD的早期诊断做出贡献,并更好地评估其严重程度。选择的方法基于自发自发语音(SS)分析得出的语音生物标记。因此,当前工作的主要目标是在SS中进行特征搜索,旨在进行临床前评估,其结果可用于选择适当的AD诊断测试。我们早期工作中使用的功能集提供了一些希望的结论,但未能捕获语音波形中存在的语音非线性动力学。当训练数据有限时,非线性特征提供的额外信息可能特别有用。在这项工作中,将观测到的时间序列的分形维数(FD)与特征向量中的线性参数结合起来,以增强原始系统的性能,同时控制计算成本。

著录项

  • 来源
    《Computer speech and language》 |2015年第1期|43-60|共18页
  • 作者单位

    Department of Systems Engineering and Automation, University of the Basque Country, Polytechnic School, Europa Plaza 1, 20008 Donostia, Spain;

    Data and Signal Processing Research Group, University of Vic - Central University of Catalonia, Vic, Spain;

    Research Center for Experimental Marine Biology and Biotechnology, Plentzia Marine Station, University of the Basque Country, UPV/EHU, Plentzia, Bizkaia, Spain;

    Signal and Communications Department, The Institute for Technological Development and Innovation on Communications, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain;

    Signal and Communications Department, The Institute for Technological Development and Innovation on Communications, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain;

    Department of Systems Engineering and Automation, University of the Basque Country, Donostia, Spain;

    Department of Systems Engineering and Automation, University of the Basque Country, Donostia, Spain;

    Neurology Department CITA-Alzheimer Foundation, Donostia, Spain;

    Neurology Department CITA-Alzheimer Foundation, Donostia, Spain;

    Department of Mathematics, University of the Basque Country, Vitoria-Gasteiz, Spain;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Nonlinear speech processing; Alzheimer's disease diagnosis; Spontaneous speech; Fractal dimensions;

    机译:非线性语音处理;阿尔茨海默氏病诊断;自发的讲话;分形维数;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号