首页> 外文期刊>Computer speech and language >Leveraging social Q&A collections for improving complex question answering
【24h】

Leveraging social Q&A collections for improving complex question answering

机译:利用社交问答集来改善复杂的问题回答

获取原文
获取原文并翻译 | 示例

摘要

This paper regards social question-and-answer (Q&A) collections such as Yahoo! Answers as knowledge repositories and investigates techniques to mine knowledge from them to improve sentence-based complex question answering (QA) systems. Specifically, we present a question-type-specific method (QTSM) that extracts question-type-dependent cue expressions from social Q&A pairs in which the question types are the same as the submitted questions. We compare our approach with the question-specific and monolingual translation-based methods presented in previous works. The question-specific method (QSM) extracts question-dependent answer words from social Q&A pairs in which the questions resemble the submitted question. The monolingual translation-based method (MTM) learns word-to-word translation probabilities from all of the social Q&A pairs without considering the question or its type. Experiments on the extension of the NTCIR 2008 Chinese test data set demonstrate that our models that exploit social Q&A collections are significantly more effective than baseline methods such as LexRank. The performance ranking of these methods is QTSM > {QSM, MTM}. The largest F_3 improvements in our proposed QTSM over QSM and MTM reach 6.0% and 5.8%, respectively.
机译:本文关注的是诸如Yahoo!之类的社会问答(Q&A)集合。作为知识库的答案,并研究从中挖掘知识的技术,以改进基于句子的复杂问题解答(QA)系统。具体而言,我们提出了一种特定于问题类型的方法(QTSM),该方法从社交问答对中提取与问题类型相关的提示表达,其中问题类型与提交的问题相同。我们将我们的方法与先前作品中提出的针对特定问题和基于单语言翻译的方法进行比较。特定问题方法(QSM)从社交问答中提取与问题相关的答案词,其中问题类似于提交的问题。基于单语言翻译的方法(MTM)从所有社交问答对中学习单词到单词的翻译概率,而无需考虑问题或其类型。对NTCIR 2008中文测试数据集进行扩展的实验表明,我们利用社交问答集的模型比LexRank等基准方法有效得多。这些方法的性能排名为QTSM> {QSM,MTM}。与QSM和MTM相比,我们建议的QTSM的F_3最大改进分别达到了6.0%和5.8%。

著录项

  • 来源
    《Computer speech and language》 |2015年第1期|1-19|共19页
  • 作者单位

    Spoken Language Communication Laboratory, National Institute of Information and Communications Technology, 3-5 Hikari-dai, Seika-cho, Soraku-gun, Kyoto 619-0289, Japan;

    Spoken Language Communication Laboratory, National Institute of Information and Communications Technology, 3-5 Hikari-dai, Seika-cho, Soraku-gun, Kyoto 619-0289, Japan;

    Spoken Language Communication Laboratory, National Institute of Information and Communications Technology, 3-5 Hikari-dai, Seika-cho, Soraku-gun, Kyoto 619-0289, Japan;

    Spoken Language Communication Laboratory, National Institute of Information and Communications Technology, 3-5 Hikari-dai, Seika-cho, Soraku-gun, Kyoto 619-0289, Japan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Complex question answering; Web mining; Summarization;

    机译:复杂的问题解答;网络挖掘;总结;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号