首页> 外文期刊>Information Processing & Management >Improving graph-based random walks for complex question answering using syntactic, shallow semantic and extended string subsequence kernels
【24h】

Improving graph-based random walks for complex question answering using syntactic, shallow semantic and extended string subsequence kernels

机译:使用句法,浅层语义和扩展字符串子序列内核改进基于图的随机游动,以解决复杂的问题

获取原文
获取原文并翻译 | 示例

摘要

The task of answering complex questions requires inferencing and synthesizing information from multiple documents that can be seen as a kind of topic-oriented, informative multi-document summarization. In generic summarization the stochastic, graph-based random walk method to compute the relative importance of textual units (i.e. sentences) is proved to be very successful. However, the major limitation of the TF'IDF approach is that it only retains the frequency of the words and does not take into account the sequence, syntactic and semantic information. This paper presents the impact of syntactic and semantic information in the graph-based random walk method for answering complex questions. Initially, we apply tree kernel functions to perform the similarity measures between sentences in the random walk framework. Then, we extend our work further to incorporate the Extended String Subsequence Kernel (ESSK) to perform the task in a similar manner. Experimental results show the effectiveness of the use of kernels to include the syntactic and semantic information for this task. © 2010 Elsevier Ltd. All rights reserved.
机译:回答复杂问题的任务需要从多个文档中推断和综合信息,这些信息可以看作是一种面向主题的,信息性的多文档摘要。在一般总结中,事实证明,用于计算文本单位(即句子)的相对重要性的基于图的随机随机游走方法非常成功。但是,TF'IDF方法的主要局限性在于它仅保留单词的频率,而没有考虑顺序,句法和语义信息。本文介绍了句法和语义信息对基于图的随机游走方法回答复杂问题的影响。最初,我们应用树核函数在随机游动框架中执行句子之间的相似性度量。然后,我们进一步扩展工作,以合并扩展字符串子序列内核(ESSK),以类似的方式执行任务。实验结果表明,使用内核包括此任务的语法和语义信息的有效性。 ©2010 ElsevierLtd。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号