首页> 外文期刊>Computer speech and language >Multi-microphone speech recognition in everyday environments
【24h】

Multi-microphone speech recognition in everyday environments

机译:日常环境中的多麦克风语音识别

获取原文
获取原文并翻译 | 示例

摘要

Multi-microphone signal processing techniques have the potential to greatly improve the robustness of speech recognition (ASR) in distant microphone settings. However, in everyday environments, typified by complex non-stationary noise backgrounds, designing effective multi-microphone speech recognition systems is nontrivial. In particular, optimal performance requires the tight integration of the front-end signal processing and the back-end statistical speech and noise source modeling. The best way to achieve this in a modern deep learning speech recognition framework remains unclear. Further, variability in microphone array design - and consequent lack of real training data for any particular configuration - may mean that systems have to be able to generalize from audio captured using mismatched microphone geometries or produced using simulation.
机译:多麦克风信号处理技术具有在远距离麦克风设置中极大提高语音识别(ASR)鲁棒性的潜力。然而,在以复杂的非平稳噪声背景为代表的日常环境中,设计有效的多麦克风语音识别系统并非易事。特别地,最佳性能要求前端信号处理与后端统计语音和噪声源建模的紧密集成。在现代深度学习语音识别框架中实现此目标的最佳方法仍不清楚。此外,麦克风阵列设计的可变性-以及因此缺乏针对任何特定配置的实际训练数据-可能意味着系统必须能够从使用不匹配的麦克风几何形状捕获的音频或使用模拟产生的音频中进行概括。

著录项

  • 来源
    《Computer speech and language》 |2017年第11期|386-387|共2页
  • 作者单位

    Department of Computer Science, University of Sheffield, Sheffield, United Kingdom;

    Department of Computer Science, University of Sheffield, Sheffield, United Kingdom;

    Inria, Villers-lès-Nancy, France;

    Mitsubishi Electric Research Laboratories, Cambridge, MA, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号