首页> 外文期刊>Computer speech and language >Application of the pairwise variability index of speech rhythm with particle swarm optimization to the classification of native and non-native accents
【24h】

Application of the pairwise variability index of speech rhythm with particle swarm optimization to the classification of native and non-native accents

机译:基于粒子群算法的语音节奏成对变异性指数在本地和非本地口音分类中的应用

获取原文
获取原文并翻译 | 示例

摘要

HighlightsA new rhythm metric, Optimized Pairwise Variability Index (O-PVI), is proposed.The O-PVI provides a generalization of conventional PVI rhythm metrics.Particle Swarm Optimization (PSO) is used to select the best O-PVI parameters.The combined PSO/O-PVI approach achieves best classification of Arabic nativeon-native speakers.Experiments compare interval- and PVI-based rhythm metrics.AbstractThis paper presents a technique that applies the pairwise variability index (PVI), a rhythm metric that quantifies variability in speech rhythm, to the classification of speech varieties. The technique combines the Particle Swarm Optimization (PSO) algorithm with a generalization of several rhythm metrics that are based on the PVI. The performance of this optimization-oriented classification is compared with classification that uses conventional (both PVI-based and interval-based) rhythm metrics. Application is made to the classification of native and non-native Arabic speech using data are from the West Point Arabic Speech Corpus; experiments are based on segmental durations and use Support Vector Machine (SVM) classification. Results show that the optimization-oriented classification provides a better discrimination between native and non-native speech varieties than classification based of the conventional rhythm metrics. When added to different combinations of these conventional metrics, the optimization-oriented procedure consistently improves classification rates.
机译: 突出显示 提出了一种新的节奏指标,即优化的成对变异指数(O-PVI)。 O-PVI提供了常规PVI节奏指标的概括。 粒子群优化(PSO)用于选择最佳O-PVI参数。 结合使用PSO / O-PVI方法可实现对阿拉伯语母语/非母语人士的最佳分类。 实验比较基于间隔和基于PVI的节奏指标。 摘要 本文介绍了一种应用成对变异性的技术索引(PVI),一种量化语音节奏变化的节奏指标,用于语音变体的分类。该技术结合了粒子群优化(PSO)算法和基于PVI的几种节奏指标的通用化。将这种面向优化的分类的性能与使用常规(基于PVI和基于间隔的)节奏指标的分类进行比较。应用来自西点阿拉伯语语音语料库的数据对本地和非本地阿拉伯语语音进行分类;实验基于分段时长,并使用支持向量机(SVM)分类。结果表明,与基于常规节奏指标的分类相比,面向优化的分类在本地语音和非本地语音变种之间提供了更好的区分。当添加到这些常规指标的不同组合中时,面向优化的过程将不断提高分类率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号