首页> 外文期刊>Computer networks >Learning-based hybrid routing for scalability in software defined networks
【24h】

Learning-based hybrid routing for scalability in software defined networks

机译:基于学习的混合路由,用于软件定义网络中的可扩展性

获取原文
获取原文并翻译 | 示例

摘要

Software Defined Network is an emerging paradigm in computer networks. The separation of the control plane from the forwarding plane in this arrangement has different aspects. This splitting provides many advantages like easy manageability and configuration. Along with benefits, various issues specific to this paradigm also arise. Routing management in such a paradigm deals with diverse concerns, objectives, and parameters before selecting the best route. Reinforcement Learning has already proven its strength in distinct fields like business, industry automation, gaming, algorithms, etc. Even routing in a network can also be made efficient using concepts defined in reinforcement learning. In this paper, routing within a controller's area is modeled, keeping scalability in mind; and an optimal solution is provided using learning. Both proactive and reactive approaches are used for flow installation, and the link load is utilized optimally. The area under a particular controller is efficiently routed, and it tweaks the network. Q-learning model helps to learn the optimal path and provide the best route in case of a failure. Once the learning completes, the model works on it. Preliminary evaluation depicts that improvement of 78%, 58%, and 47 % is achieved for the number of messages generation when compared with other already exiting solutions for routing in Software Defined Networks.
机译:软件定义的网络是计算机网络中的新兴范例。在这种布置中与转发平面的控制平面分离具有不同的方面。这种分裂提供了许多易于可管理性和配置的优点。随着福利,也会出现对此范式特有的各种问题。在选择最佳路线之前,在此类范例中的路由管理涉及不同的关注,目标和参数。强化学习已经证明了其在不同的领域中的实力,如商业,行业自动化,游戏,算法等。即使在网络中的路由也可以使用加固学习中定义的概念进行高效。在本文中,在控制器区域内的路由被建模,牢记可扩展性;使用学习提供最佳解决方案。主动和反应方法都用于流量安装,并且链接负载最佳地利用。特定控制器下的区域有效地路由,并调整网络。 Q学习模型有助于学习最佳路径并在发生故障时提供最佳路线。一旦学习完成,模型就在其上工作。初步评估描述,在与其他已经退出的解决方案中用于在软件定义的网络中路由的其他解决方案相比,可以实现78%,58%和47%的提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号