首页> 外文期刊>Computer networks >A spam worker detection approach based on heterogeneous network embedding in crowdsourcing platforms
【24h】

A spam worker detection approach based on heterogeneous network embedding in crowdsourcing platforms

机译:基于异构网络嵌入众包平台的垃圾邮件工作者检测方法

获取原文
获取原文并翻译 | 示例

摘要

Due to the popularity of crowdsourcing, more crowds are participating in crowdsourcing tasks. However, the proportion of spam workers is continuously increasing due to the openness of crowdsourcing platforms and their incentive mechanisms. To defend against threats from spam workers, researchers have proposed reputation-based and verification-based detection methods, but they either cannot address various collusion patterns or are costly when facing a large number of spam workers with "good" reputations due to collusion. Therefore, we propose a spam worker detection approach based on heterogeneous network embedding. We first model three collusion patterns and analyze the characteristics of spam workers to provide a theoretical basis for detecting spam workers. We then transform the problem of spam worker detection into a node classification problem in a crowdsourcing heterogeneous network in which the vectors of worker nodes are learned using network embedding. To improve the efficiency of network embedding, we propose an improved variable-length random walk algorithm based on node centrality. Finally, based on the obtained vectors of worker nodes, a one-class SVM is used to detect spam workers. The experiments demonstrate that our proposed approach can effectively detect spam workers in different collusion patterns and that the proposed random walk algorithm can reduce the time spent on model training while improving the efficiency of network embedding.
机译:由于众包的普及,更多的人群正在参与众包任务。然而,由于众包平台的开放性及其激励机制,垃圾邮件工人的比例不断增加。为了捍卫垃圾邮件工人的威胁,研究人员提出了基于声誉和验证的检测方法,但它们要么无法解决各种勾结模式,要么在面对大量垃圾邮件工作者时昂贵,或者由于勾结而具有“良好”的声誉。因此,我们提出了一种基于异构网络嵌入的垃圾邮件工作者检测方法。我们首先举办三种勾结模式并分析垃圾邮件工人的特征,为检测垃圾邮件工作者提供理论依据。然后,我们将垃圾邮件工作人员检测的问题转换为节点分类问题,其中包括使用网络嵌入的人工节点的载体。为了提高网络嵌入的效率,我们提出了一种基于节点中心的可变长度随机播放算法。最后,基于所获得的工作人员节点的载体,使用单级SVM来检测垃圾邮件工作者。实验表明,我们的建议方法可以有效地检测不同勾结模式的垃圾邮件工人,并且所提出的随机步道算法可以减少模型训练的时间,同时提高网络嵌入效率。

著录项

  • 来源
    《Computer networks》 |2020年第24期|107587.1-107587.11|共11页
  • 作者单位

    Cent South Univ Sch Comp Sci & Engn Changsha 410075 Hunan Peoples R China;

    Cent South Univ Sch Comp Sci & Engn Changsha 410075 Hunan Peoples R China;

    Cent South Univ Sch Comp Sci & Engn Changsha 410075 Hunan Peoples R China;

    Cent South Univ Sch Comp Sci & Engn Changsha 410075 Hunan Peoples R China;

    Shanghai Polytech Univ Sch Comp & Informat Engn Shanghai 201209 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Crowdsourcing; Spam worker detection; Network embedding; Random walk;

    机译:众包;垃圾邮件工作人员检测;网络嵌入;随机步行;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号