首页> 外文期刊>Computer networks >Multi-observable reputation scoring system for flagging suspicious user sessions
【24h】

Multi-observable reputation scoring system for flagging suspicious user sessions

机译:用于标记可疑用户会话的多可观察到的信誉评分系统

获取原文
获取原文并翻译 | 示例

摘要

Conventionally, network and cloud infrastructure security is handled by firewalls which monitor traffic and block malicious access by matching certain observables, e.g., IP, and DNS, to blacklisted entries in intelligence databases. Therefore, such an approach fails to deal with emerging threats that utilize unclassified observables, and to report suspicious activities of individual users. In this paper we propose MuSeR, a novel approach to assign reputation scores for observables, even when no prior information is available, and flag suspicious sessions by conducting inter-observable analysis of user requests. In essence, MuSeR opts to assist network and cloud administrators mitigate attacks while avoiding unwarranted blocking of benign access. MuSeR achieves such an objective by associating session reputation scores based on the trustworthiness of the user navigation pattern, and conducting dynamic analysis of individual observables involved within requests. Specifically, MuSeR employs a new machine learning model for classifying observables using features specifically chosen to factor in evidence provided by blacklists, and access patterns of known attacks. To determine a request score, MuSeR maps the classifier probabilities to adaptive subjective logic and then uses multinomial fusion to leverage evidence from the different observables. Given the request scores, MuSeR further promotes a novel session reputation scoring model that uses three-valued subjective logic to handle trust propagation and aggregation over user requests. The effectiveness of MuSeR is validated using a large dataset obtained from popular databases such as WHOIS, CYMUS, and passive DNS databases.
机译:传统上,网络和云基础架构安全性由防火墙处理,该防火墙通过匹配某些可观察到,例如IP和DNS来阻止恶意访问,以对智能数据库中的黑名单条目匹配。因此,这种方法未能处理利用未分类的可观察到的新兴威胁,并报告个人用户的可疑活动。在本文中,我们提出了一种新的方法,即使在没有现有信息,也是通过可用的先前信息来分配可观察到的声誉分数,并通过对用户请求进行间可观察的分析来标记可疑会话。从本质上讲,标记选择帮助网络和云管理员缓解攻击,同时避免无良良好的良性访问阻止。由基于用户导航模式的可信度将会话信誉分数与涉及请求内涉及的个体可观察者进行动态分析,通过将会话信誉分数联将会话信誉得分实现了这样的目标。具体而言,使用专门为黑名单提供的证据专门选择的功能,使用功能采用新的机器学习模型来分类可观察,以及已知攻击的访问模式。为了确定请求分数,标志将分类器概率映射到自适应主观逻辑,然后使用多项融合来利用来自不同观察到的证据。鉴于请求分数,标注进一步促进了一种新的会话信誉评分模型,它使用三维主观逻辑来处理用户请求的信任传播和聚合。使用从流行数据库获得的大型数据集(如WHOIS,CYMUS和被动DNS数据库)获得了验证的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号