首页> 外文期刊>Computer networks >Detection of zero-day attacks: An unsupervised port-based approach
【24h】

Detection of zero-day attacks: An unsupervised port-based approach

机译:检测零天攻击:无监督的基于港口的方法

获取原文
获取原文并翻译 | 示例

摘要

Last years have witnessed more and more DDoS attacks towards high-profile websites, as the Mirai botnet attack on September 2016, or more recently the memcached attack on March 2018, this time with no bother required. These two outbreaks were not detected nor mitigated during their spreading, but only at the time they happened. Such attacks are generally preceded by several stages, including infection of hosts or device fingerprinting; being able to capture this activity would allow their early detection. In this paper, we propose a technique for the early detection of emerging botnets and newly exploited vulnerabilities, which consists in (i) splitting the detection process over different network segments and retaining only distributed anomalies, (ii) monitoring at the port-level, with a simple yet efficient change-detection algorithm based on a modified Z-score measure. We argue how our technique, named Split-and-Merge, can ensure the detection of large-scale zero-day attacks and drastically reduce false positives. We apply the method on two datasets: the MAWI dataset, which provides daily traffic traces of a transpacific backbone link, and the UCSD Network Telescope dataset which contains unsolicited traffic mainly coming from botnet scans. The assumption of a normal distribution - for which the Z-score computation makes sense - is verified through empirical measures. We also show how the solution generates very few alerts; an extensive evaluation on the last three years allows identifying major attacks (including Mirai and memcached) that current Intrusion Detection Systems (IDSs) have not seen. Finally, we classify detected known and unknown anomalies to give additional insights about them.
机译:去年已经见证了越来越多的DDOS攻击对高调的网站,作为Mirai Botnet攻击2016年9月,或者在2018年3月的Memcached攻击中,这次没有费用。在他们的蔓延期间没有检测到这两个爆发,而且只在他们发生时才被释放。这种攻击通常在几个阶段之前,包括宿主或设备指纹的感染;能够捕获此活动将允许他们的早期检测。在本文中,我们提出了一种提前检测出现僵尸网络和新剥削漏洞的技术,该技术包括在(i)在不同的网络段中分割检测过程并仅保留分布式异常,(ii)在端口级监控,采用基于修改Z评分测量的简单而有效的变化检测算法。我们认为我们的技术如何命名为分型和合并,可以确保检测大规模的零日攻击并大大降低误报。我们在两个数据集上应用方法:Mawi DataSet,它提供了几个跨性骨干链路的日常流量迹线,以及包含主要来自僵尸网络扫描的未经请求的流量的UCSD网络望远镜数据集。正常分布的假设 - 通过经验措施来验证Z-Score计算的定义。我们还展示了解决方案如何产生很少的警报;过去三年的广泛评估允许识别主要攻击(包括Mirai和Memcached),即没有看到当前入侵检测系统(IDS)。最后,我们分类检测到的已知和未知的异常,以提供对他们的额外见解。

著录项

  • 来源
    《Computer networks》 |2020年第24期|107391.1-107391.15|共15页
  • 作者单位

    Thales Gennevilliers France|Sorbonne Univ LIP6 France CNRS Paris France;

    Thales Gennevilliers France;

    Thales Gennevilliers France;

    Cnam Cedric F-75003 Paris France;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号