首页> 外文期刊>Computer networks >Adaptive load balancing based on accurate congestion feedback for asymmetric topologies
【24h】

Adaptive load balancing based on accurate congestion feedback for asymmetric topologies

机译:基于准确拥塞反馈的非对称拓扑自适应负载平衡

获取原文
获取原文并翻译 | 示例

摘要

Datacenter load balancing schemes exist to facilitate parallel data transmission with multiple paths under various uncertainties such as traffic dynamics and topology asymmetries. Taking deployment challenges into account, several optimized schemes (e.g. CLOVE, Hermes) to ECMP balance load at end hosts. However, inaccurate congestion feedback exists in these solutions. They either detect congestion through Explicit Congestion Notification (ECN) and coarse-grained Round-Trip Time (RTT) measurements or are congestion-oblivious. These congestion feedbacks are not sufficient enough to indicate the accurate congestion status under asymmetry. And when rerouting events occur, outdated ACKs carrying congestion feedback of other paths can improperly influence the current sending rate. After our observations and analyses, these inaccurate congestion feedback can degrade performance.Therefore, we explore how to address above problems while ensuring good adaptation to existing switch hardware and network protocol stack. We propose ALB, an adaptive load balancing mechanism based on accurate congestion feedback running at end hosts, which is resilient to asymmetry. ALB leverages a latency-based congestion detection to precisely reroute new flowlets to the paths with lighter load, and an ACK correction method to avoid inaccurate flow rate adjustment. In large-scale simulations, ALB achieves up to 13% and 48% better average flow completion time (FCT) than CONGA and CLOVE-ECN under asymmetry, respectively. And compared with other schemes ALB improves the average and the 99th percentile FCTs for small flows under high bursty traffic by 43-174% and 75-129%. Under the situation of dynamic network changes, ALB also provides competitive overall performance and maintains stable performance for small flows. (C) 2019 Elsevier B.V. All rights reserved.
机译:存在数据中心负载平衡方案,以促进在各种不确定性(例如流量动态和拓扑不对称)下通过多路径进行并行数据传输。考虑到部署挑战,最终主机上的ECMP平衡负载的几种优化方案(例如CLOVE,Hermes)。但是,这些解决方案中存在不正确的拥塞反馈。他们要么通过显式拥塞通知(ECN)和粗粒度往返时间(RTT)测量来检测拥塞,要么可以忽略拥塞。这些拥塞反馈不足以指示不对称情况下的准确拥塞状态。而且,当发生重新路由事件时,携带其他路径的拥塞反馈的过时ACK可能会不适当地影响当前的发送速率。经过观察和分析,这些不准确的拥塞反馈会降低性能。因此,我们探索如何解决上述问题,同时确保对现有交换机硬件和网络协议栈的良好适应性。我们提出ALB,这是一种基于在终端主机上运行的准确拥塞反馈的自适应负载平衡机制,该机制可以抵抗不对称性。 ALB利用基于等待时间的拥塞检测功能,以较轻的负载将新的流精确地重新路由到路径,并采用ACK校正方法来避免流量调整不准确。在大规模仿真中,在不对称情况下,ALB的平均流完成时间(FCT)分别比CONGA和CLOVE-ECN分别高13%和48%。与其他方案相比,ALB将高突发流量下小流量的平均FCT和第99个百分点的FCT分别提高了43-174%和75-129%。在网络动态变化的情况下,ALB还可以提供有竞争力的总体性能,并为小流量保持稳定的性能。 (C)2019 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Computer networks》 |2019年第5期|133-145|共13页
  • 作者单位

    Huazhong Univ Sci & Technol, Minist Educ China, Sch Comp Sci & Technol, Wuhan Natl Lab Optoelect,Key Lab Informat Storage, Wuhan, Hubei, Peoples R China;

    Huazhong Univ Sci & Technol, Minist Educ China, Sch Comp Sci & Technol, Wuhan Natl Lab Optoelect,Key Lab Informat Storage, Wuhan, Hubei, Peoples R China|Shenzhen Huazhong Univ Sci & Technol, Res Inst, Wuhan, Hubei, Peoples R China;

    Huazhong Univ Sci & Technol, Minist Educ China, Sch Comp Sci & Technol, Wuhan Natl Lab Optoelect,Key Lab Informat Storage, Wuhan, Hubei, Peoples R China;

    Huazhong Univ Sci & Technol, Minist Educ China, Sch Comp Sci & Technol, Wuhan Natl Lab Optoelect,Key Lab Informat Storage, Wuhan, Hubei, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Datacenter network; Load balancing; Congestion feedback; Low latency;

    机译:数据中心网络;负载平衡;拥塞反馈;低延迟;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号