首页> 外文期刊>Computer networks >Scheduling dependent coflows to minimize the total weighted job completion time in datacenters
【24h】

Scheduling dependent coflows to minimize the total weighted job completion time in datacenters

机译:调度相关的并流以最大程度地减少数据中心中加权作业完成的总时间

获取原文
获取原文并翻译 | 示例

摘要

Datacenter networks are critical to cloud computing. The coflow abstraction is a major leap forward of application-aware network scheduling. In the context of multi-stage jobs, there are dependencies among coflows. As a result, there is a large divergence between coflow-completion-time (CCT) and job completion-time (JCT). To our best knowledge, this is the first work that systematically studies: how to schedule dependent coflows of multi-stage jobs, so that the total weighted job completion time can be minimized. We present a formal mathematical formulation. Inspired by the optimal solution of the relaxed linear programming, we design an algorithm that runs in polynomial time to solve this problem with an approximation ratio of (2M + 1) in general case, and 3 in special case, where M is the number of hosts. Evaluation results demonstrate that, the largest gap between our algorithm and the lower bound is only 9.14%. In testbeds, we reduce the JCT by up to 81.65% comparing with pure DCTCP. In simulations, we reduce the average JCT by up to 33.48% comparing with Aalo, a heuristic multi-stage coflow scheduler; we reduce the total weighted JCT by up to 83.58% comparing with LP-OV-LS, the state-of-the-art approximation algorithm of coflow scheduling. (C) 2019 Elsevier B.V. All rights reserved.
机译:数据中心网络对于云计算至关重要。同流抽象是可感知应用程序的网络调度的重大飞跃。在多阶段作业的上下文中,并流之间存在依赖性。结果,同流完成时间(CCT)和作业完成时间(JCT)之间存在很大差异。据我们所知,这是系统地研究的第一项工作:如何安排多阶段作业的依存同流,以使总加权作业完成时间最小化。我们提出一个正式的数学公式。受宽松线性规划的最佳解决方案启发,我们设计了一种在多项式时间内运行的算法来解决此问题,一般情况下的近似比率为(2M +1),特殊情况下的近似比率为3,其中M是主机。评估结果表明,我们的算法与下限之间的最大差距仅为9.14%。在测试台中,与纯DCTCP相比,我们将JCT降低了高达81.65%。在仿真中,与启发式多阶段同流调度程序Aalo相比,我们将平均JCT降低了33.48%。与最新的同流调度近似算法LP-OV-LS相比,我们将总加权JCT降低了83.58%。 (C)2019 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Computer networks》 |2019年第20期|193-205|共13页
  • 作者单位

    Nanjing Univ, State Key Lab Novel Software Technol, Nanjing 210023, Jiangsu, Peoples R China;

    Nanjing Univ, State Key Lab Novel Software Technol, Nanjing 210023, Jiangsu, Peoples R China;

    Nanjing Univ, State Key Lab Novel Software Technol, Nanjing 210023, Jiangsu, Peoples R China;

    Nanjing Univ, State Key Lab Novel Software Technol, Nanjing 210023, Jiangsu, Peoples R China;

    Nanjing Univ, State Key Lab Novel Software Technol, Nanjing 210023, Jiangsu, Peoples R China;

    Nanjing Univ, State Key Lab Novel Software Technol, Nanjing 210023, Jiangsu, Peoples R China;

    Nanjing Univ, State Key Lab Novel Software Technol, Nanjing 210023, Jiangsu, Peoples R China;

    Nanjing Univ, State Key Lab Novel Software Technol, Nanjing 210023, Jiangsu, Peoples R China;

    Nanjing Univ, State Key Lab Novel Software Technol, Nanjing 210023, Jiangsu, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Coflow scheduling; Approximation algorithm; Datacenter;

    机译:同流调度;近似算法;数据中心;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号