机译:基于XGBoost的身体健康评估模型,该模型使用高级功能选择和贝叶斯超参数优化进行可穿戴式跑步监控
Beijing Normal Univ, Coll Informat Sci & Technol, Beijing, Peoples R China;
Beijing Normal Univ, Coll Informat Sci & Technol, Beijing, Peoples R China;
Beijing Normal Univ, Coll Informat Sci & Technol, Beijing, Peoples R China;
Qufu Normal Univ, Sch Informat Sci & Engn, Beijing, Peoples R China;
Acad Mil Sci PLA, Beijing, Peoples R China|Tsinghua Univ, State Key Lab Microwave & Digital Commun, Natl Lab Informat Sci & Technol, Beijing, Peoples R China;
Beijing Normal Univ, Business Sch, Beijing, Peoples R China;
Univ Liubljana, Fac Elect Engn, Trzaska 25, Ljubljana 1000, Slovenia;
Smart wearables; Physical fitness evaluation model; PPG signal; Advanced feature selection; XGBoost; Bayesian hyper-parameter optimization;
机译:特征选择和贝叶斯超参数优化的Xgboost风险模型
机译:贝叶斯结构方程模型中的超参数选择
机译:基于贝叶斯优化和GA-PARSIMONY的混合方法,通过结合超参数优化和特征选择来搜索简约模型
机译:基于可穿戴式智能频段系统的基于梯度-提升-回归的身体健康评估模型
机译:用于无监督特征选择的贝叶斯模型。
机译:可穿戴式物联网智能日志补丁:基于边缘计算的贝叶斯深度学习网络系统用于多路访问物理监控系统
机译:主流可穿戴健身器件的可用性研究:特征分析与系统可用性规模评估(预印)