首页> 外文期刊>Computer networks >An XGBoost-based physical fitness evaluation model using advanced feature selection and Bayesian hyper-parameter optimization for wearable running monitoring
【24h】

An XGBoost-based physical fitness evaluation model using advanced feature selection and Bayesian hyper-parameter optimization for wearable running monitoring

机译:基于XGBoost的身体健康评估模型,该模型使用高级功能选择和贝叶斯超参数优化进行可穿戴式跑步监控

获取原文
获取原文并翻译 | 示例

摘要

Thanks to the improvement of technologies such as Internet of Things, bio-sensing and data mining, smart wearable technologies have recently received increasing attention for teenagers' sport and health monitoring. Despite the powerful data-acquisition ability of the current wearable products on the market, they still suffer performance deficiency in valuable knowledge extraction due to the lack of accurate computational model and in-depth data analysis. Based on this, this paper proposes a machine learning based physical fitness evaluation model oriented to wearable running monitoring for teenagers, in which a variant of the gradient boosting machine (GBM) combined with advanced feature selection and Bayesian hyper-parameter optimization is employed to build a physical fitness evaluation model. To begin with, we design a special experimental paradigm for data acquisition based on a conventional running activity, in which a group of teenagers' photoplethysmography (PPG) signals in different testing stages are collected by a set of smartbands developed by ourselves. Next, PPG signals are processed in four steps which match with the four modules in the proposed model including signal preprocessing, physiological data estimation, feature engineering and classification modules. Firstly, the signal preprocessing module aims for suppressing noise and removing baseline drift in PPG signals by using a smoothness prior approach (SPA) and a median filter (MF), respectively. Secondly, the physiological data estimation module achieves conversion from PPG signals to physiological data such as heart rate (HR) and blood oxygen saturation (SpO(2)). Thirdly, the feature engineering module extracts from the physiological data a group of key features closely related to physical fitness statuses, and then implements a novel advanced feature selection scheme by using Pearson correlation and importance score ranking based sequential forward search (PC-ISR-SFS). Fourthly, the classification module utilizes an extreme gradient boosting (XGBoost) algorithm for classification of each teenager's physical fitness level, in which hyper-parameters are adaptively tuned with Bayesian optimization. Experimental results demonstrate that not only does the proposed model achieve higher evaluation accuracy than the existing reference models, but it also provides a promising solution to future physical fitness evaluation for teenagers through a machine-learning-model based intelligent computing instead of traditional-empirical-model based-manual. calculation. (C) 2019 Elsevier B.V. All rights reserved.
机译:由于物联网,生物传感和数据挖掘等技术的进步,智能可穿戴技术最近在青少年的运动和健康监测方面受到越来越多的关注。尽管市场上当前的可穿戴产品具有强大的数据采集能力,但由于缺乏精确的计算模型和深入的数据分析,它们在有价值的知识提取中仍然遭受性能缺陷。基于此,本文提出了一种面向青少年可穿戴跑步监测的基于机器学习的身体健康评估模型,其中采用了梯度提升机(GBM)的变体结合高级特征选择和贝叶斯超参数优化来构建身体素质评估模型。首先,我们基于常规的跑步活动设计一种特殊的数据采集实验范式,其中由我们自己开发的一组智能手环收集一组处于不同测试阶段的青少年光电容积描记(PPG)信号。接下来,PPG信号按四个步骤进行处理,与建议模型中的四个模块匹配,包括信号预处理,生理数据估计,特征工程和分类模块。首先,信号预处理模块旨在通过分别使用平滑先验方法(SPA)和中值滤波器(MF)来抑制PPG信号中的噪声并消除基线漂移。其次,生理数据估计模块实现了从PPG信号到生理数据的转换,例如心率(HR)和血氧饱和度(SpO(2))。第三,特征工程模块从生理数据中提取与身体健康状况密切相关的一组关键特征,然后利用基于Pearson相关性和重要性评分的连续正向搜索(PC-ISR-SFS)实现一种新颖的高级特征选择方案。 )。第四,分类模块利用极端梯度增强(XGBoost)算法对每个青少年的体能水平进行分类,其中,通过贝叶斯优化对超参数进行自适应调整。实验结果表明,所提出的模型不仅比现有参考模型具有更高的评估准确性,而且还通过基于机器学习模型的智能计算而非传统经验模型为青少年的未来身体素质评估提供了有希望的解决方案基于模型的手册。计算。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号