首页> 外文期刊>Computer networks >SafePath: Differentially-private publishing of passenger trajectories in transportation systems
【24h】

SafePath: Differentially-private publishing of passenger trajectories in transportation systems

机译:SafePath:运输系统中乘客轨迹的差异私有发布

获取原文
获取原文并翻译 | 示例

摘要

In recent years, the collection of spatio-temporal data that captures human movements has increased tremendously due to the advancements in hardware and software systems capable of collecting person-specific data. The bulk of the data collected by these systems has numerous applications, or it can simply be used for general data analysis. Therefore, publishing such big data is greatly beneficial for data recipients. However, in its raw form, the collected data contains sensitive information pertaining to the individuals from which it was collected and must be anonymized before publication. In this paper, we study the problem of privacy-preserving passenger trajectories publishing and propose a solution under the rigorous differential privacy model. Unlike sequential data, which describes sequentiality between data items, handling spatio-temporal data is a challenging task due to the fact that introducing a temporal dimension results in extreme sparseness. Our proposed solution introduces an efficient algorithm, called SafePath, that models trajectories as a noisy prefix tree and publishes epsilon-differentially-private trajectories while minimizing the impact on data utility. Experimental evaluation on real-life transit data in Montreal suggests that SafePath significantly improves efficiency and scalability with respect to large and sparse datasets, while achieving comparable results to existing solutions in terms of the utility of the sanitized data. (C) 2018 Elsevier B.V. All rights reserved.
机译:近年来,由于能够收集个人特定数据的硬件和软件系统的进步,捕获人类运动的时空数据的收集已大大增加。这些系统收集的大量数据具有许多应用程序,或者可以简单地用于常规数据分析。因此,发布这样的大数据对于数据接收者是非常有益的。但是,以原始形式收集的数据包含与收集其数据的个人有关的敏感信息,并且在发布前必须匿名。在本文中,我们研究了保留隐私的旅客航迹的发布问题,并在严格的差分隐私模型下提出了解决方案。与描述数据项之间的顺序性的顺序数据不同,处理时空数据是一项具有挑战性的任务,因为引入时间维度会导致极端稀疏。我们提出的解决方案引入了一种称为SafePath的高效算法,该算法将轨迹建模为嘈杂的前缀树,并发布epsilon-差分私有轨迹,同时将对数据实用程序的影响降至最低。在蒙特利尔对现实中的过境数据进行的实验评估表明,相对于大型和稀疏数据集,SafePath可以显着提高效率和可伸缩性,同时在清理数据的实用性方面可以与现有解决方案取得可比的结果。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号