首页> 外文期刊>Computer networks >Host-based scheduling: Achieving near-optimal transport for datacenter networks
【24h】

Host-based scheduling: Achieving near-optimal transport for datacenter networks

机译:基于主机的调度:为数据中心网络实现近乎最佳的传输

获取原文
获取原文并翻译 | 示例

摘要

Datacenters use limited network resources to host complex and diverse applications, which requires transport schemes to treat diverse applications as a black box and provide low latency for latency-sensitive applications. Many schemes need to beforehand obtain flow information (e.g., flow size, deadline or traffic distribution) or require new hardware design or modification of applications, which leads to difficult use and inefficiency in practice. To solve the dilemma, we present Strict Priority Queuing (SPQ), an information-agnostic and readily deployable flow scheduling scheme, which provides near-optimal flow completion times (FCT) for latency-sensitive applications and effectively harnesses the long-tail behaviors of flows. Unlike the existing in-network priority schemes, SPQ enables host-based, fine-grained flow scheduling, leaving the in-network queuing mechanism simple. SPQ does not make any assumptions about the availability of any flow information and hence, can be applied to any types of datacenter applications. Moreover, SPQ approximates the Least Attained Service (LAS) scheduling discipline and hence is a near-optimal solution. Meanwhile, SPQ utilizes two novel feedback adjustment mechanisms to alleviate the possible negative impact of long flows on short flows. Our simulation results demonstrate that SPQ effectively addresses some major limitations of the in-network priority schemes, resulting in the near-optimal performance in reducing the average and tail latency. For example, the average FCT of short flows for SPQ only has a 0-3.5% gap with respect to the ideal information-aware scheme under a Hybrid workload. (C) 2018 Elsevier B.V. All rights reserved.
机译:数据中心使用有限的网络资源来托管复杂多样的应用程序,这需要传输方案将多样的应用程序视为黑盒,并为对延迟敏感的应用程序提供低延迟。许多方案需要事先获得流量信息(例如流量大小,期限或流量分配),或者需要新的硬件设计或对应用程序的修改,这导致使用困难和实践效率低下。为了解决这个难题,我们提出了严格的优先级排队(SPQ),这是一种信息不可知且易于部署的流调度方案,它为延迟敏感的应用程序提供了接近最佳的流完成时间(FCT),并有效利用了流。与现有的网络内优先级方案不同,SPQ支持基于主机的细粒度流调度,从而使网络内排队机制变得简单。 SPQ不对任何流信息的可用性进行任何假设,因此可以应用于任何类型的数据中心应用程序。此外,SPQ近似于最差服务(LAS)调度准则,因此是一种接近最佳的解决方案。同时,SPQ利用两种新颖的反馈调整机制来减轻长流量对短流量的可能负面影响。我们的仿真结果表明,SPQ有效地解决了网络优先级方案的一些主要限制,从而在降低平均延迟和拖尾延迟方面表现出近乎最佳的性能。例如,与混合工作负载下的理想信息感知方案相比,SPQ短流的平均FCT仅具有0-3.5%的差距。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号