首页> 外文期刊>Computer networks >Self-adaptive utility-based web session management
【24h】

Self-adaptive utility-based web session management

机译:基于自适应实用程序的Web会话管理

获取原文
获取原文并翻译 | 示例

摘要

In the Internet, where millions of users are a click away from your site, being able to dynamically classify the workload in real time, and predict its short term behavior, is crucial for proper self-management and business efficiency. As workloads vary significantly according to current time of day, season, promotions and linking, it becomes impractical for some ecommerce sites to keep over-dimensioned infrastructures to accommodate the whole load. When server resources are exceeded, session-based admission control systems allow maintaining a high throughput in terms of properly finished sessions and QoS for a limited number of sessions; however, by denying access to excess users, the website looses potential customers.rnIn the present study we describe the architecture of AUGURES, a system that learns to predict Web user's intentions for visiting the site as well its resource usage. Predictions are made from information known at the time of their first request and later from navigational clicks. For this purpose we use machine learning techniques and Markov-chain models. The system uses these predictions to automatically shape QoS for the most profitable sessions, predict short-term resource needs, and dynamically provision servers according to the expected revenue and the cost to serve it. We test the AUGURES prototype on access logs from a high-traffic, online travel agency, obtaining promising results.
机译:在Internet上,数百万用户可以从您的站点上单击一下,因此,能够实时动态地对工作负载进行分类并预测其短期行为,对于适当的自我管理和业务效率至关重要。由于工作负载根据一天中的当前时间,季节,促销和链接而有很大不同,因此对于某些电子商务网站而言,保留超大型的基础架构来容纳全部负载变得不切实际。当超出服务器资源时,基于会话的准入控制系统允许在正确完成的会话和有限数量的会话的QoS方面保持高吞吐量。但是,通过拒绝访问过多的用户,该网站失去了潜在的客户。在本研究中,我们描述了AUGURES的体系结构,该系统可以学习预测Web用户访问该网站的意图及其资源使用情况。预测是根据第一个请求时已知的信息进行的,随后根据导航的单击进行。为此,我们使用机器学习技术和马尔可夫链模型。系统使用这些预测自动为最有利可图的会话调整QoS,预测短期资源需求,并根据预期的收入和服务成本动态配置服务器。我们在交通繁忙的在线旅行社的访问日志上测试了AUGURES原型,从而获得了可喜的结果。

著录项

  • 来源
    《Computer networks》 |2009年第10期|1712-1721|共10页
  • 作者单位

    Computer Architecture Department, Technical University of Catalonia, Campus Nord UPC, edifici Omega, Jordi Girona Salgado 1-3, 08034 Barcelona, Spain;

    Department of Management, Technical University of Catalonia, Barcelona, Spain Department of Operations and Information Management of The Wharton School, University of Pennsylvania;

    Computer Architecture Department, Technical University of Catalonia, Campus Nord UPC, edifici Omega, Jordi Girona Salgado 1-3, 08034 Barcelona, Spain;

    Department of Software, LARCA Research Group, Technical University of Catalonia, Barcelona, Spain;

    Computer Architecture Department, Technical University of Catalonia, Campus Nord UPC, edifici Omega, Jordi Girona Salgado 1-3, 08034 Barcelona, Spain Barcelona Supercomputing Center, Barcelona, Spain;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    utility computing; resource management; ecommerce; autonomic computing; web mining; machine learning;

    机译:实用计算;资源管理;电子商务;自主计算网络挖掘;机器学习;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号