首页> 外文期刊>Computer networks >A Nonlinear, Recurrence-based Approach To Traffic Classification
【24h】

A Nonlinear, Recurrence-based Approach To Traffic Classification

机译:基于非线性,基于递归的交通分类方法

获取原文
获取原文并翻译 | 示例

摘要

The ability to accurately classify and identify the network traffic associated with different applications is a central issue for many network operation and research topics including Quality of Service enforcement, traffic engineering, security, monitoring and intrusion-detection. However, traditional classification approaches for traffic to higher-level application mapping, such as those based on port or payload analysis, are highly inaccurate for many emerging applications and hence useless in actual networks. This paper presents a recurrence plot-based traffic classification approach based on the analysis of non-stationary "hidden" transition patterns of IP traffic flows. Such nonlinear properties cannot be affected by payload encryption or dynamic port change and hence cannot be easily masqueraded. In performing a quantitative assessment of the above transition patterns, we used recurrence quantification analysis, a nonlinear technique widely used in many fields of science to discover the time correlations and the hidden dynamics of statistical time series. Our model proved to be effective for providing a deterministic interpretation of recurrence patterns derived by complex protocol dynamics in end-to-end traffic flows, and hence for developing qualitative and quantitative observations that can be reliably used in traffic classification.
机译:准确分类和识别与不同应用程序相关的网络流量的能力是许多网络运营和研究主题(包括服务质量实施,流量工程,安全性,监视和入侵检测)的核心问题。但是,用于流量到更高级别应用程序映射的传统分类方法(例如基于端口或有效负载分析的方法)对于许多新兴应用程序非常不准确,因此在实际网络中毫无用处。本文基于对IP流量的非平稳“隐藏”过渡模式的分析,提出了一种基于递归图的流量分类方法。这样的非线性特性不会受到有效负载加密或动态端口更改的影响,因此不能轻易地被伪装。在对上述过渡模式进行定量评估时,我们使用了循环定量分析(一种广泛用于许多科学领域的非线性技术)来发现时间相关性和统计时间序列的隐藏动态。我们的模型被证明可以有效地提供对端到端流量中复杂协议动态得出的递归模式的确定性解释,从而开发出可以在流量分类中可靠使用的定性和定量观察结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号