首页> 外文期刊>Computer networks >A bilingual approach for conducting Chinese and English social media sentiment analysis
【24h】

A bilingual approach for conducting Chinese and English social media sentiment analysis

机译:进行中英文社交媒体情感分析的双语方法

获取原文
获取原文并翻译 | 示例

摘要

Due to the advancement of technology and globalization, it has become much easier for people around the world to express their opinions through social media platforms. Harvesting opinions through sentiment analysis from people with different backgrounds and from different cultures via social media platforms can help modern organizations, including corporations and governments understand customers, make decisions, and develop strategies. However, multiple languages posted on many social media platforms make it difficult to perform a sentiment analysis with acceptable levels of accuracy and consistency. In this paper, we propose a bilingual approach to conducting sentiment analysis on both Chinese and English social media to obtain more objective and consistent opinions. Instead of processing English and Chinese comments separately, our approach treats review comments as a stream of text containing both Chinese and English words. That stream of text is then segmented by our segment model and trimmed by the stop word lists which include both Chinese and English words. The stem words are then processed into feature vectors and then applied with two exchangeable natural language models, SVM and N-Gram. Finally, we perform a case study, applying our proposed approach to analyzing movie reviews obtained from social media. Our experiment shows that our proposed approach has a high level of accuracy and is more effective than the existing learning-based approaches. (C) 2014 Elsevier B.V. All rights reserved.
机译:由于技术的进步和全球化,世界各地的人们通过社交媒体平台表达意见变得更加容易。通过社交媒体平台通过情感分析从不同背景和不同文化的人群中收集意见,可以帮助包括企业和政府在内的现代组织了解客户,制定决策并制定策略。但是,在许多社交媒体平台上发布的多种语言使得很难以可接受的准确性和一致性来执行情感分析。在本文中,我们提出了一种对中英文社交媒体进行情感分析的双语方法,以获得更为客观一致的意见。我们的方法不是将评论和中英文评论分开处理,而是将评论评论视为包含中英文单词的文本流。然后,该文本流将由我们的细分模型进行细分,并由包含中英文单词的停用词列表进行修整。然后将词干处理成特征向量,然后与两个可交换的自然语言模型SVM和N-Gram一起应用。最后,我们进行案例研究,将我们提出的方法应用于分析从社交媒体获得的电影评论。我们的实验表明,我们提出的方法具有较高的准确性,并且比现有的基于学习的方法更有效。 (C)2014 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号