首页> 外文期刊>Computer networks >Dynamic traffic steering based on fuzzy Q-Learning approach in a multi-RAT multi-layer wireless network
【24h】

Dynamic traffic steering based on fuzzy Q-Learning approach in a multi-RAT multi-layer wireless network

机译:多RAT多层无线网络中基于模糊Q学习方法的动态流量导向

获取原文
获取原文并翻译 | 示例

摘要

The infrastructure of current cellular networks must evolve to cope with the increasing demand for mobile-broadband services. Heterogeneous networks are an attractive solution for operators to expand network capacity, based on deploying different Radio Access Technologies, cell sizes and carrier frequencies in the same environment. As a result, operators gain flexibility to distribute traffic across the different networks (or layers) in order to make a more efficient use of resources and enhance network performance. In this work, a dynamic traffic steering technique in multi-RAT multi-layer wireless networks is proposed. In particular, a fuzzy rule-based reinforcement learning algorithm modifies handover parameters according to a specific policy set by the operator, which typically searches for a trade-off between key performance indicators. Results show that the proposed optimization algorithm provides good flexibility to support different policies by simply adjusting some weighting factors. In addition, the Q-Learning algorithm is shown as an effective solution to adapt the network to context variations, such as those produced in the user spatial distribution.
机译:当前蜂窝网络的基础设施必须发展以应对对移动宽带服务不断增长的需求。基于在同一环境中部署不同的无线接入技术,小区大小和载波频率,异构网络是运营商扩展网络容量的有吸引力的解决方案。结果,运营商获得了在不同网络(或层)之间分配流量的灵活性,以便更有效地利用资源并增强网络性能。在这项工作中,提出了一种在多RAT多层无线网络中的动态业务导向技术。特别是,基于模糊规则的强化学习算法会根据运营商设置的特定策略修改切换参数,该策略通常会在关键性能指标之间进行权衡。结果表明,所提出的优化算法通过简单地调整一些加权因子就可以为不同的策略提供良好的灵活性。此外,Q-Learning算法显示为一种使网络适应上下文变化(例如在用户空间分布中产生的变化)的有效解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号