首页> 外文期刊>Computer networks >TPD: Travel Prediction-based Data Forwarding for light-traffic vehicular networks
【24h】

TPD: Travel Prediction-based Data Forwarding for light-traffic vehicular networks

机译:TPD:轻型交通网络基于旅行预测的数据转发

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes Travel Prediction-based Data forwarding (TPD), tailored and optimized for multihop vehicle-to-vehicle communications. The previous schemes forward data packets mostly utilizing statistical information about road network traffic, which becomes much less accurate when vehicles travel in a light-traffic vehicular network. In this light-traffic vehicular network, highly dynamic vehicle mobility can introduce a large variance for the traffic statistics used in the data forwarding process. However, with the popularity of GPS navigation systems, vehicle trajectories become available and can be utilized to significantly reduce this uncertainty in the road traffic statistics. Our TPD takes advantage of these vehicle trajectories for a better data forwarding in light-traffic vehicular networks. Our idea is that with the trajectory information of vehicles in a target road network, a vehicle encounter graph is constructed to predict vehicle encounter events (i.e., timing for two vehicles to exchange data packets in communication range). With this encounter graph, TPD optimizes data forwarding process for minimal data delivery delay under a specific delivery ratio threshold. Through extensive simulations, we demonstrate that our TPD significantly outperforms existing legacy schemes in a variety of road network settings. (C) 2015 Elsevier B.V. All rights reserved.
机译:本文提出了基于旅行预测的数据转发(TPD),它是针对多跳车对车通信量身定制和优化的。先前的方案主要使用关于道路网络流量的统计信息来转发数据分组,当车辆在轻型交通网络中行驶时,其准确性将大大降低。在这种轻型交通运输网络中,高度动态的车辆机动性会给数据转发过程中使用的交通统计数据带来很大的差异。但是,随着GPS导航系统的普及,车辆轨迹变得可用并且可以用来显着减少道路交通统计中的这种不确定性。我们的TPD利用这些车辆的轨迹在轻型交通网络中更好地进行数据转发。我们的想法是利用目标道路网络中车辆的轨迹信息,构造车辆遭遇图来预测车辆遭遇事件(即,两辆车在通信范围内交换数据包的时间)。通过此遭遇图,TPD优化了数据转发过程,以在特定的传输比率阈值下将数据传输延迟降至最低。通过广泛的仿真,我们证明了我们的TPD在各种道路网络设置中均明显优于现有的旧方案。 (C)2015 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Computer networks》 |2015年第24期|166-182|共17页
  • 作者单位

    Sungkyunkwan Univ, Dept Interact, Seoul, South Korea;

    Sungkyunkwan Univ, Dept Interact, Seoul, South Korea;

    Sungkyunkwan Univ, Dept Interact, Seoul, South Korea;

    Univ Minnesota, Dept Comp Sci & Engn, Minneapolis, MN 55455 USA;

    Univ Minnesota, Dept Comp Sci & Engn, Minneapolis, MN 55455 USA;

    IBM Watson Hlth, Watson Hlth Cloud, Cambridge, MA USA;

    Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA;

    Univ Elect Sci & Technol China, Dept Comp Sci & Engn, Chengdu, Peoples R China;

    Univ Minnesota, Dept Comp Sci & Engn, Minneapolis, MN 55455 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Vehicular network; V2V; Data forwarding; Trajectory; Prediction; Encounter;

    机译:车载网络V2V数据转发轨迹预测遭遇;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号