首页> 外文期刊>Computer networks >A novel cyber security capability: Inferring Internet-scale infections by correlating malware and probing activities
【24h】

A novel cyber security capability: Inferring Internet-scale infections by correlating malware and probing activities

机译:新型的网络安全功能:通过关联恶意软件和探测活动来推断Internet规模的感染

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a new approach to infer worldwide malware-infected machines by solely analyzing their generated probing activities. In contrary to other adopted methods, the proposed approach does not rely on symptoms of infection to detect compromised machines. This allows the inference of malware infection at very early stages of contamination. The approach aims at detecting whether the machines are infected or not as well as pinpointing the exact malware type/family. The latter insights allow network security operators of diverse organizations, Internet service providers and backbone networks to promptly detect their clients' compromised machines in addition to effectively providing them with tailored anti-malware/patch solutions. To achieve the intended goals, the proposed approach exploits the darknet Internet space and initially filters out misconfiguration traffic targeting such space using a probabilistic model. Subsequently, the approach employs statistical methods to infer large-scale probing activities as perceived by the dark space. Consequently, such activities are correlated with malware samples by leveraging fuzzy hashing and entropy based techniques. The proposed approach is empirically evaluated using a recent 60 GB of real darknet traffic and 65 thousand real malware samples. The results concur that the rationale of exploiting probing activities for worldwide early malware infection detection is indeed very promising. Further, the results, which were validated using publically available data resources, demonstrate that the extracted inferences exhibit noteworthy accuracy and can generate significant cyber security insights that could be used for effective mitigation. (C) 2015 Elsevier B.V. All rights reserved.
机译:本文提出了一种仅通过分析其产生的探测活动来推断全球受恶意软件感染的机器的新方法。与其他采用的方法相反,所提出的方法不依靠感染症状来检测受感染的机器。这样可以推断出在感染的早期阶段就感染了恶意软件。该方法旨在检测机器是否被感染,以及查明确切的恶意软件类型/家庭。后者的见解使各种组织,Internet服务提供商和骨干网络的网络安全运营商不仅可以有效地为客户提供量身定制的反恶意软件/补丁解决方案,还可以迅速检测其客户的受感染机器。为了实现预期目标,提出的方法利用了暗网Internet空间,并首先使用概率模型过滤出针对此类空间的误配置流量。随后,该方法采用统计方法来推断暗空间所感知的大规模探测活动。因此,这些活动通过利用模糊散列和基于熵的技术与恶意软件样本相关联。使用最近的60 GB实际暗网流量和65 000个实际恶意软件样本对所提出的方法进行经验评估。结果表明,利用探测活动进行全球早期恶意软件感染检测的原理确实非常有前途。此外,使用公开可用的数据资源对结果进行了验证,结果表明,提取的推论显示出显着的准确性,并且可以产生可用于有效缓解的重要网络安全见解。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号