首页> 外文期刊>Computer networks >MAF-SAM: An effective method to perceive data plane threats of inter domain routing system
【24h】

MAF-SAM: An effective method to perceive data plane threats of inter domain routing system

机译:MAF-SAM:一种感知域间路由系统数据平面威胁的有效方法

获取原文
获取原文并翻译 | 示例

摘要

The BGP-based inter-domain routing system plays an important role in the Internet. However, the BGP has some design flaws, which result in many serious security problems for the inter-domain routing system. Recently there has been a new kind of LDoS attack against BGP sessions from data plane. Compared to traditional control plane threats, such as prefix hijacking, the new attack, BGP-LDoS exploits the vulnerability of adaptive mechanism of BGP and would trigger a wild range of cascading failure in inter domain routing system. Unfortunately, existing methods are difficult to detect this threat. To end this, we propose a method based on adaptive fusion of multi features to perceive security threats of inter domain routing system. Several statistics attributes of BGP routing, information are firstly chosen to be security features. Then we establish a normal state sub-model for each security features and fuse them together to describe the normal state of the system by linear weighting. Since the fusion model represents the system security state very well, we can obtain the threat probability by computing the deviation of security features from their normal values. The experimental results show that the method can perceive not only control plane threats but also data plane threats of inter domain routing system. (C) 2016 Elsevier B.V. All rights reserved.
机译:基于BGP的域间路由系统在Internet中扮演着重要角色。但是,BGP有一些设计缺陷,这会导致域间路由系统出现许多严重的安全问题。最近,出现了一种新的针对来自数据平面的BGP会话的LDoS攻击。与传统的控制平面威胁(例如前缀劫持)相比,这种新攻击与BGP-LDoS相比,利用了BGP自适应机制的脆弱性,并且会在域间路由系统中引发级联故障。不幸的是,现有方法很难检测到这种威胁。为此,我们提出了一种基于多特征自适应融合的感知域间路由系统安全威胁的方法。首先选择BGP路由的几个统计属性信息作为安全功能。然后,我们为每个安全功能建立一个正常状态子模型,并将它们融合在一起,以通过线性加权描述系统的正常状态。由于融合模型很好地表示了系统的安全状态,因此我们可以通过计算安全特征与其正常值的偏差来获得威胁概率。实验结果表明,该方法不仅可以感知域间路由系统的控制平面威胁,而且可以感知数据平面威胁。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号