首页> 外文期刊>Computer networks >Robust detection of false data injection attacks for data aggregation in an Internet of Things-based environmental surveillance
【24h】

Robust detection of false data injection attacks for data aggregation in an Internet of Things-based environmental surveillance

机译:在基于物联网的环境监控中针对数据聚合的虚假数据注入攻击的鲁棒检测

获取原文
获取原文并翻译 | 示例

摘要

AbstractData aggregation is an important technology for environmental surveillance based on the Internet of Things (IoT) in the process of compressing redundant data collected from small devices that are distributed over a wide area in a network. However, since most IoT devices work in an unattended manner with limited security guarantees, they are extremely vulnerable to node compromise. Once adversaries take charge of compromised nodes, they can launch false data injection (FDI) attacks, which are known to be destructive for data aggregation. To minimize the damage caused by an FDI attack, we adopt a Hierarchical Bayesian Spatial-Temporal (HBST) model to describe the statistical characteristics of sensory data in an aggregation-based communication mode and propose an anomaly detection-based scheme to detect compromised nodes in the early stage. The basic idea behind our scheme is using state estimation techniques based on divided difference filtering (DDF) to detect false aggregated data and determining the nodes that are suspected of injecting false data using sequential hypothesis testing (SHT). Additionally, we model the problem of FDI attack detection using a quantitative two-player game theory analysis, derive the optimal strategies for both the adversaries and defenders, and demonstrate that the adversaries’ gain from the attack is greatly limited by the defenders, even in the worst case when both players follow their respective optimal strategies. Moreover, we present theoretical and simulation analyses to evaluate the performance of the proposed scheme in terms of the effectiveness, efficiency and overhead. The analytical results show that the proposed scheme achieves a high detection rate and low false positive rate with a small amount of detection samples.
机译: 摘要 数据聚合是一种基于物联网(IoT)的环境监控重要技术,它可以压缩从分布在广泛范围内的小型设备收集的冗余数据网络中的区域。但是,由于大多数IoT设备在无人看管的情况下以有限的安全保证工作,因此它们极易受到节点破坏的影响。一旦对手负责受感染的节点,他们就可以发起错误的数据注入(FDI)攻击,这种攻击已知会对数据聚合造成破坏。为了最大程度地减少FDI攻击造成的损害,我们采用分层贝叶斯时空(HBST)模型来描述基于聚合的通信模式下的感觉数据的统计特征,并提出了一种基于异常检测的方案来检测FDI攻击中的受损节点。早期阶段。我们方案背后的基本思想是使用基于差分分解滤波(DDF)的状态估计技术来检测错误的聚合数据,并使用顺序假设检验(SHT)来确定怀疑注入错误数据的节点。此外,我们使用定量的两人博弈理论分析对FDI攻击检测问题进行建模,得出针对对手和防御者的最佳策略,并证明防御者从攻击中获得的收益受到防御者的极大限制,即使在最糟糕的情况是两个玩家都遵循各自的最佳策略。此外,我们提出了理论和仿真分析,以评估该方案在有效性,效率和开销方面的性能。分析结果表明,该方案检测样本少,检出率高,假阳性率低。

著录项

  • 来源
    《Computer networks》 |2017年第24期|410-428|共19页
  • 作者单位

    College of Internet of Things, Nanjing University of Posts and Telecommunications,College of Computer Science, Nanjing University of Posts and Telecommunications,Key Lab of “Broadband Wireless Communication and Sensor Network Technology” of Ministry of Education;

    College of Computer Science, Nanjing University of Posts and Telecommunications;

    Key Lab of “Broadband Wireless Communication and Sensor Network Technology” of Ministry of Education;

    College of Internet of Things, Nanjing University of Posts and Telecommunications;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Internet of Things (IoT); Security; In-network aggregation; False injection attack detection; Divided difference filter (DDF); Sequential analysis;

    机译:物联网(IoT);安全性;网络内聚合;错误注入攻击检测;分差过滤器(DDF);顺序分析;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号