首页> 外文期刊>Computer networks >Novel feature selection and classification of Internet video traffic based on a hierarchical scheme
【24h】

Novel feature selection and classification of Internet video traffic based on a hierarchical scheme

机译:基于分层方案的互联网视频流量新颖特征选择与分类

获取原文
获取原文并翻译 | 示例

摘要

Accurate traffic classification is critical for efficient network management and resources utilization. Different video traffics have different QoS (Quality of Service) requirements. To provide Internet video services with better QoS support, a fine grained classification scheme for network video traffic is proposed in this paper. Through extensive statistical analysis of typical video traffic flows with a consistency-based method, several new flow statistical features are extracted. They are found to be more effective in discriminating different video traffics, especially from the QoS perspective, than commonly used features available in the literature. A hierarchical k-Nearest Neighbor (kNN) classification algorithm is then developed based on the combinations of these statistical features. Experiments are performed to evaluate the effectiveness of the proposed method on a large scale real network video traffic data. The experimental results show that the proposed method outperforms existing methods applying commonly used flow statistical features. (C) 2017 Elsevier B.V. All rights reserved.
机译:准确的流量分类对于有效的网络管理和资源利用至关重要。不同的视频流量具有不同的QoS(服务质量)要求。为了给互联网视频服务提供更好的QoS支持,本文提出了一种针对网络视频流量的细粒度分类方案。通过使用基于一致性的方法对典型视频流量的大量统计分析,提取了几个新的流量统计特征。发现它们比文献中常用的功能更能有效地区分不同的视频流量,尤其是从QoS角度而言。然后,根据这些统计特征的组合,开发出分层的k最近邻(kNN)分类算法。实验进行了评估该方法对大规模真实网络视频流量数据的有效性。实验结果表明,该方法优于采用常用流量统计特征的现有方法。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号