首页> 外文期刊>Computer networks >Probability density estimation in sensor networks based on distributed mixture of factor analyzers, mobile agents and stochastic sensor selection
【24h】

Probability density estimation in sensor networks based on distributed mixture of factor analyzers, mobile agents and stochastic sensor selection

机译:基于因子分析仪,移动代理和随机传感器选择的分布式混合的传感器网络中的概率密度估计

获取原文
获取原文并翻译 | 示例

摘要

This paper considers the problem of distributed probability density estimation of high-dimensional data in sensor networks. In order to describe and analyze high-dimensional observations, a mixture of factor analyzers can be used instead of Gaussian mixture model. Due to high communication costs between sensor nodes in centralized algorithms, use of these algorithms is not affordable. In this paper, a distributed estimation algorithm is presented based on the mixture of factor analyzers, mobile agents and stochastic sensor selection. In the proposed algorithm, at the beginning of each iteration, a mobile agent is assigned to each independent route of the network which consists of several sensor nodes based on a stochastic sensor selection scheme. The mobile agents calculate local sufficient statistics vector in each sensor node and update global sufficient statistics. At the end of each iteration, the parameters of the mixture model are computed by using global sufficient statistics. Convergence analysis of the proposed distributed algorithm is also presented. Finally, the performance of the proposed algorithm is evaluated by using numerical simulations. Simulation results show the promising performance of the proposed distributed algorithm. (C) 2018 Elsevier B.V. All rights reserved.
机译:本文考虑了传感器网络中高维数据的分布概率密度估计问题。为了描述和分析高维观测值,可以使用混合因子分析仪代替高斯混合模型。由于在集中式算法中传感器节点之间的通信成本很高,因此无法负担得起这些算法的使用。在本文中,提出了一种基于因子分析仪,移动代理和随机传感器选择的混合估计算法。在提出的算法中,在每次迭代的开始,都会基于随机传感器选择方案,将移动代理分配给网络的每个独立路由,该网络由数个传感器节点组成。移动代理计算每个传感器节点中的本地充足统计信息向量,并更新全局充足统计信息。在每次迭代结束时,将使用全局足够的统计信息来计算混合模型的参数。还对所提出的分布式算法进行了收敛性分析。最后,通过数值仿真评估了所提算法的性能。仿真结果表明了该分布式算法的良好性能。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号