首页> 外文期刊>Computer networks >Internet traffic characterisation: Third-order statistics & higher-order spectra for precise traffic modelling
【24h】

Internet traffic characterisation: Third-order statistics & higher-order spectra for precise traffic modelling

机译:互联网流量表征:用于精确流量建模的三阶统计和高阶频谱

获取原文
获取原文并翻译 | 示例

摘要

Undoubtedly, the characterisation of network traffic flows is vitally important in understanding the dynamics of Internet traffic and in appropriately dimensioning network resources for network and systems management. The vast majority of modelling techniques developed for volume-based traffic profiling (based on packet and/byte counts) imply the statistical assumptions of stationarity, Gaussianity and linearity, which are often taken for granted without being explicitly validated. In this paper, we demonstrate that such properties are often not applicable due to the high fluctuations in Internet traffic, and should therefore be validated first before they are assumed. We employ Time-Frequency (TF) representations and the Hinich algorithms for validating these three modelling assumptions on real backbone and edge network traces. We show by conducting a passive, offline statistical analysis on real operational network traffic traces from both backbone and edge links that link traffic is extremely dynamic irrespective of the level of aggregation and that model characteristics vary. Subsequently, we propose the use of a representative of higher order spectra, the bispectrum, to act as a particularly suitable method for volume-based traffic profiling due to its ability to adapt to different underlying statistical assumptions, as opposed to ARIMA timeseries models that have been typically used in the literature. We demonstrate that the bispectrum, a signal processing tool that has so far been used in the area of image processing and acoustic signals, can be exploited to accurately characterise traffic volumes per transport protocol, and can therefore contribute to fine-grained network operations tasks such as application classification and anomaly detection. (C) 2018 The Author(s). Published by Elsevier B.V.
机译:毫无疑问,网络流量的表征对于理解Internet流量的动态以及为网络和系统管理适当地确定网络资源的大小至关重要。为基于流量的流量分析而开发的绝大多数建模技术(基于数据包和/或字节数)都暗示了平稳性,高斯性和线性度的统计假设,而这些假设通常被认为是理所当然的,而未得到明确验证。在本文中,我们证明,由于Internet流量的高波动性,此类属性通常不适用,因此应先进行验证,然后再进行假设。我们采用时频(TF)表示法和Hinich算法,以验证真实骨干网和边缘网络迹线上的这三个建模假设。我们通过对来自骨干网和边缘链路的实际运营网络流量跟踪进行被动,脱机的统计分析,表明无论聚合级别如何,链路流量都非常动态,并且模型特征也有所不同。随后,我们建议使用代表更高阶频谱的双谱,作为基于体积的流量分析的一种特别合适的方法,因为它能够适应不同的基础统计假设,而与ARIMA时间序列模型相反通常在文献中使用。我们证明了双谱仪(一种迄今为止已在图像处理和声音信号领域中使用的信号处理工具)可以被利用来准确地表征每个传输协议的通信量,因此可以有助于实现细粒度的网络操作任务,例如作为应用分类和异常检测。 (C)2018作者。由Elsevier B.V.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号