首页> 外文期刊>Computer networks >Topology mapping algorithm for 2D and 3D Wireless Sensor Networks based on maximum likelihood estimation
【24h】

Topology mapping algorithm for 2D and 3D Wireless Sensor Networks based on maximum likelihood estimation

机译:基于最大似然估计的2D和3D无线传感器网络拓扑映射算法

获取原文
获取原文并翻译 | 示例

摘要

Automation of many sensor network protocols requires maps indicating sensor locations. Physical coordinate based maps capture the physical layout including voids and shapes, but obtaining the required distance values is often not feasible or economical. Alternative is to use topological maps based only on connectivity Information. Due to lack of physical distances, they are not faithful representatives of the physical layout. Here we present Maximum Likelihood-Topology Maps (ML-TM) that provide a more accurate physical representation, by using the probability of signal reception, an easily measurable parameter that is sensitive to the distance. Approach is illustrated using a mobile robot that listens to signals transmitted by sensor nodes and maps the packet reception probability to a coordinate system using a signal receiving probability function. ML-TM is an intermediate map between exact physical maps and hop- based topology coordinates. Results show that ML-TM algorithm generates maps for various network shapes with voids/obstacles in different environmental conditions with an error less than 7%. Performance of the algorithm in 3D sensor networks is also illustrated. (C) 2017 Elsevier B.V. All rights reserved.
机译:许多传感器网络协议的自动化都需要显示传感器位置的地图。基于物理坐标的地图可以捕获包括空隙和形状在内的物理布局,但是获取所需的距离值通常不可行或不经济。替代方法是仅基于连接性信息使用拓扑图。由于缺乏物理距离,它们不是物理布局的忠实代表。在这里,我们介绍最大似然拓扑图(ML-TM),它通过使用信号接收的概率(对距离敏感的易于测量的参数)来提供更准确的物理表示。使用移动机器人来说明该方法,该移动机器人侦听传感器节点发送的信号,并使用信号接收概率函数将数据包接收概率映射到坐标系。 ML-TM是精确物理图和基于跃点的拓扑坐标之间的中间图。结果表明,ML-TM算法针对具有不同环境条件下的空隙/障碍物的各种网络形状生成映射,其误差小于7%。还说明了该算法在3D传感器网络中的性能。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号