首页> 外文期刊>Computer methods in biomechanics and bio >Computerised segmentation of suspicious lesions in the digital mammograms
【24h】

Computerised segmentation of suspicious lesions in the digital mammograms

机译:数字化乳腺X线照片中可疑病变的计算机化分割

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a robust marker-controlled watershed method is proposed to yield more accurate segmentation results to delineate the masses in mammograms. The proposed method consists of three main steps: pre-processing, marker extraction and the final segmentation. In the first step, pre-processing algorithm is developed using top-hat morphological filter, wavelet transform followed by a noise smoothing anisotropic diffusion filter. In the second step, a novel technique is developed for the extraction of robust markers to locate the accurate position of the suspicious lesions. Finally, the extracted markers are used within the watershed algorithm to allow the reliable segmentation and quantification of masses in mammograms. The developed computer method was quantitatively evaluated using the area overlap metric (AOM), average minimum Euclidean distance (AMED) and Hausdorff distance (HD). The mean ± standard deviation values of AOM, AMED and HD for our method are 0.83 ± 0.10, 1.49 ± 1.20mm and 4.62 ± 0.80mm. We compared our method with previously developed marker-controlled watershed algorithm with respect to the manual segmentation performed by an expert radiologist. Experimental results demonstrate that our method has a strong potential to be used as an aid to radiologists in the interpretation of screening mammograms.
机译:本文提出了一种鲁棒的标记控制分水岭方法,以产生更准确的分割结果,以描绘乳房X线照片中的质量。所提出的方法包括三个主要步骤:预处理,标记提取和最终分割。第一步,使用高顶形态滤波器,小波变换和噪声平滑各向异性扩散滤波器来开发预处理算法。在第二步中,开发了一种新颖的技术,用于提取鲁棒的标记物以定位可疑病变的准确位置。最后,在分水岭算法中使用提取的标记,以实现对乳房X线照片中质量的可靠分割和量化。使用面积重叠度量(AOM),平均最小欧氏距离(AMED)和Hausdorff距离(HD)定量评估了开发的计算机方法。我们的方法的AOM,AMED和HD的平均值±标准偏差值为0.83±0.10、1.49±1.20mm和4.62±0.80mm。我们将我们的方法与先前开发的标记控制的分水岭算法进行了比较,该算法由专业放射科医生进行手动分割。实验结果表明,我们的方法具有很强的潜力,可以帮助放射科医生解释X光检查。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号