机译:分辨率自适应深度分层(RADHicaL)学习方案应用于数字病理图像的核分割
Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA;
Pathology & Anatomical Sciences, SUNY Buffalo, Buffalo, NY, USA;
University Hospitals Case Medical Center, Surgical Pathology, Cleveland, OH, USA;
Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA;
Data processing and analysis; applications of imaging and visualisation; image processing and analysis; deep learning; digital pathology; output generation;
机译:将多个线索集成到自适应分层分割中,以获取高分辨率的遥感影像
机译:将多个线索集成到自适应分层分割中,以获取高分辨率的遥感影像
机译:应用于3,3'-二氨基联苯胺和苏木精染色的滤泡性淋巴瘤数字图像的各种自适应阈值分割方法的验证
机译:结合深度学习和主动轮廓模型对组织病理学图像进行改进的核分割
机译:特征敏感和自适应图像三角剖分:基于超像素的图像分割和网格生成方案。
机译:分辨率自适应深度分层(RADHicaL)学习方案应用于数字病理图像的核分割
机译:应用于数字病理图像核细分的分辨率自适应深层次(radhical)学习方案